Air flow and Heat Transfer Modeling of an Axial Flux Permanent Magnet Generator

Axial Flux Permanent Magnet (AFPM) Machines require effective cooling due to their high power density. The detrimental effects of overheating such as degradation of the insulation materials, magnets demagnetization, and increase of Joule losses are well known. This paper describes the CFD simulations performed on a test rig model of an air cooled Axial Flux Permanent Magnet (AFPM) generator built at Durham University to identify the temperatures and heat transfer coefficient on the stator. The Reynolds Averaged Navier-Stokes and the Energy equations are solved and the flow pattern and heat transfer developing inside the machine are described. The Nusselt number on the stator surfaces has been found. The dependency of the heat transfer on the flow field is described temperature field obtained. Tests on an experimental are undergoing in order to validate the CFD results.

Removal of Boron from Waste Waters by Ion- Exchange in a Batch System

Boron minerals are very useful for various industrial activities, such as glass industry and detergent industry, due to its mechanical and chemical properties. During the production of boron compounds, many of these are introduced into the environment in the form of waste. Boron is also an important micro nutrient for the plants to vegetate but if it exists in high concentrations, it could have toxic effects. The maximum boron level in drinking water for human health is given as 0.3 mg/L in World Health Organization (WHO) standards. The toxic effects of boron should be noted especially for dry regions, thus, in recent years, increasing attention has been paid to remove the boron from waste waters. In this study, boron removal is implemented by ion exchange process using Amberlite IRA-743 resin. Amberlite IRA-743 resin is a boron specific resin and it belongs to the polymerizate sorbent group within the aminopolyol functional group. Batch studies were performed to investigate the effects of various experimental parameters, such as adsorbent dose, initial concentration and pH, on the removal of boron. It is found that, when the adsorbent dose increases removal of boron from the liquid phase increases. However, an increase in the initial concentration decreases the removal of boron. The effective pH values for removal of boron are determined between 8.5 and 9. Equilibrium isotherms were also analyzed by Langmuir and Freundlich isotherm models. The Langmuir isotherm is obeyed better than the Freundlich isotherm.

Global and Local Structure of Supported Pd Catalysts

The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.

Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process

In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9

Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Interference Reduction Technique in Multistage Multiuser Detector for DS-CDMA System

This paper presents the results related to the interference reduction technique in multistage multiuser detector for asynchronous DS-CDMA system. To meet the real-time requirements for asynchronous multiuser detection, a bit streaming, cascade architecture is used. An asynchronous multiuser detection involves block-based computations and matrix inversions. The paper covers iterative-based suboptimal schemes that have been studied to decrease the computational complexity, eliminate the need for matrix inversions, decreases the execution time, reduces the memory requirements and uses joint estimation and detection process that gives better performance than the independent parameter estimation method. The stages of the iteration use cascaded and bits processed in a streaming fashion. The simulation has been carried out for asynchronous DS-CDMA system by varying one parameter, i.e., number of users. The simulation result exhibits that system gives optimum bit error rate (BER) at 3rd stage for 15-users.

Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

An Effective Algorithm for Minimum Weighted Vertex Cover Problem

The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Comparison of The Fertilizer Properties of Ash Fractions from Medium-Sized (32 MW) and Small-Sized (6 MW) Municipal District Heating Plants

Due to the low heavy metal concentrations, the bottom ash from a 32 MW municipal district heating plant was determined to be a potential forest fertilizer as such. However, additional Ca would be needed, because its Ca concentration of 1.9- % (d.w.) was lower than the statutory Finnish minimum limit value of 6.0-% (d.w.) for Ca in forest fertilizer. Due to the elevated As concentration (53.0 mg/kg; d.w.) in the fly ash from the 32 MW municipal district heating plant, and Cr concentration (620 mg/kg; d.w.) in the ash fraction (i.e. mixture of the bottom ash and fly ash) from the 6 MW municipal district heating plant, which exceed the limit values of 30 mg/kg (d.w.) and 300 mg/kg (d.w.) for As and Cr, respectively, these residues are not suitable as forest fertilizers. Although these ash fractions cannot be used as a forest fertilizer as such, they can be used for the landscaping of landfills or in industrial and other areas that are closed to the public. However, an environmental permit is then needed.

Simulation of the Pedestrian Flow in the Tawaf Area Using the Social Force Model

In today-s modern world, the number of vehicles is increasing on the road. This causes more people to choose walking instead of traveling using vehicles. Thus, proper planning of pedestrians- paths is important to ensure the safety of pedestrians in a walking area. Crowd dynamics study the pedestrians- behavior and modeling pedestrians- movement to ensure safety in their walking paths. To date, many models have been designed to ease pedestrians- movement. The Social Force Model is widely used among researchers as it is simpler and provides better simulation results. We will discuss the problem regarding the ritual of circumambulating the Ka-aba (Tawaf) where the entrances to this area are usually congested which worsens during the Hajj season. We will use the computer simulation model SimWalk which is based on the Social Force Model to simulate the movement of pilgrims in the Tawaf area. We will first discuss the effect of uni and bi-directional flows at the gates. We will then restrict certain gates to the area as the entrances only and others as exits only. From the simulations, we will study the effect of the distance of other entrances from the beginning line and their effects on the duration of pilgrims circumambulate Ka-aba. We will distribute the pilgrims at the different entrances evenly so that the congestion at the entrances can be reduced. We would also discuss the various locations and designs of barriers at the exits and its effect on the time taken for the pilgrims to exit the Tawaf area.

Impact of Changes in Excise Tax Rate for Strong Alcohol on Consumption and State Revenues in Latvia

State tax revenues in most countries started to decrease during the recession. Government of Latvia decided to compensate the decline by increasing rates of several taxes including excise tax on strong alcohol. The total increase in 2009 constituted 42% and the rate increased from 896€ to 1 266€ for 100l of absolute alcohol. Since then this has had a negative impact on consumption volumes and the split between legal and illegal market. The legal alcohol sales decreased by almost 50% (by volume), consequentially having negative effect on the State revenues from VAT and excise tax. Estimated results for 2010 are indicating 54 million € decrease in VAT, excise tax and other taxes versus 2008 (excise tax -19 million €, VAT -30 million €, other taxes -5 million €). The paper aims to analyze impact of the increase in excise tax on consumption patterns, State revenues and competitiveness of the local companies to draw up proposals for the state authorities regarding more effective tax policies. The analysis reveals a relationship between excise tax rate, illegal alcohol market and State revenues. The results can be used to improve excise tax system and effectiveness in Latvia.

Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

Numerical Study of Transient Laminar Natural Convection Cooling of high Prandtl Number Fluids in a Cubical Cavity: Influence of the Prandtl Number

This paper presents and discusses the numerical simulations of transient laminar natural convection cooling of high Prandtl number fluids in cubical cavities, in which the six walls of the cavity are subjected to a step change in temperature. The effect of the fluid Prandtl number on the heat transfer coefficient is studied for three different fluids (Golden Syrup, Glycerin and Glycerin-water solution 50%). The simulations are performed at two different Rayleigh numbers (5·106 and 5·107) and six different Prandtl numbers (3 · 105 ≥Pr≥ 50). Heat conduction through the cavity glass walls is also considered. The propsed correlations of the averaged heat transfer coefficient (N u) showed that it is dependant on the initial Ra and almost independent on P r. The instantaneous flow patterns, temperature contours and time evolution of volume averaged temperature and heat transfer coefficient are presented and analyzed.

A Constructive Proof of the General Brouwer Fixed Point Theorem and Related Computational Results in General Non-Convex sets

In this paper, by introducing twice continuously differentiable mappings, we develop an interior path following following method, which enables us to give a constructive proof of the general Brouwer fixed point theorem and thus to solve fixed point problems in a class of non-convex sets. Under suitable conditions, a smooth path can be proven to exist. This can lead to an implementable globally convergent algorithm. Several numerical examples are given to illustrate the results of this paper.

Evaluating Spectral Relationships between Signals by Removing the Contribution of a Common, Periodic Source A Partial Coherence-based Approach

Partial coherence between two signals removing the contribution of a periodic, deterministic signal is proposed for evaluating the interrelationship in multivariate systems. The estimator expression was derived and shown to be independent of such periodic signal. Simulations were used for obtaining its critical value, which were found to be the same as those for Gaussian signals, as well as for evaluating the technique. An Illustration with eletroencephalografic (EEG) signals during photic stimulation is also provided. The application of the proposed technique in both simulation and real EEG data indicate that it seems to be very specific in removing the contribution of periodic sources. The estimate independence of the periodic signal may widen partial coherence application to signal analysis, since it could be used together with simple coherence to test for contamination in signals by a common, periodic noise source.

How to Connect User Research and not so Forthcoming Technology Scenarios – The Extended Home Environment Case Study

This paper draws a methodological framework adopted within an internal Telecomitalia project aimed to identify, on a user centred base, the potential interest towards a technological scenario aimed to extend on a personal bubble the typical communication and media fruition home environment. The problem is that involving user in the early stage of the development of such disruptive technology scenario asking users opinions on something that users actually do not manage even in a rough manner could lead to wrong or distorted results. For that reason we chose an approach that indirectly aim to understand users hidden needs in order to obtain a meaningful picture of the possible interest for a technological proposition non yet easily understandable.

Seismic Control of Tall Building Using a New Optimum Controller Based on GA

This paper emphasizes on the application of genetic algorithm (GA) to optimize the parameters of the TMD for achieving the best results in the reduction of the building response under earthquake excitations. The Integral of the Time multiplied Absolute value of the Error (ITAE) based on relative displacement of all floors in the building is taken as a performance index of the optimization criterion. The problem of robustly TMD controller design is formatted as an optimization problem based on the ITAE performance index to be solved using GA that has a story ability to find the most optimistic results. An 11–story realistic building, located in the city of Rasht, Iran is considered as a test system to demonstrate effectiveness of the proposed GA based TMD (GATMD) controller without specifying which mode should be controlled. The results of the proposed GATMD controller are compared with the uncontrolled structure through timedomain simulation and some performance indices. The results analysis reveals that the designed GA based TMD controller has an excellent capability in reduction of the seismically excited example building and the ITAE performance, that is so for remains as unknown, can be introduced a new criteria - method for structural dynamic design.

Volatility of Cu, Ni, Cr, Co, Pb, and As in Fluidised-Bed Combustion Chamber in Relation to Their Modes of Occurrence in Coal

Modes of occurrence of Pb, As, Cr, Co, Cu, and Ni in bituminous coal and lignite were determined by means of sequential extraction using NH4OAc, HCl, HF and HNO3 extraction solutions. Elemental affinities obtained were then evaluated in relation to volatility of these elements during the combustion of these coals in two circulating fluidised-bed power stations. It was found out that higher percentage of the elements bound in silicates brought about lower volatility, while higher elemental proportion with monosulphides association (or bound as exchangeable ion) resulted in higher volatility. The only exception was the behavior of arsenic, whose volatility depended on amount of limestone added during the combustion process (as desulphurisation additive) rather than to its association in coal.

The Development of Taiwanese Electronic Medical Record Systems Evaluation Instrument

This study used Item Analysis, Exploratory Factor Analysis (EFA) and Reliability Analysis (Cronbach-s α value) to exam the Questions which selected by the Delphi method based on the issue of “Socio-technical system (STS)" and user-centered perspective. A structure questionnaire with seventy-four questions which could be categorized into nine dimensions (healthcare environment, organization behaviour, system quality, medical data quality, service quality, safety quality, user usage, user satisfaction, and organization net benefits) was provided to evaluate EMR of the Taiwanese healthcare environment.

Medical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy

As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori knowledge of the expected joint intensity distribution estimated from pre-aligned training images. The goal of the registration is to find the optimal transformation such that the distance between the observed joint intensity distribution obtained from the testing image pair and the expected joint intensity distribution obtained from the corresponding training image pair is minimized. The distance is measured using the divergence measure based on Tsallis entropy. Experimental results show that, compared with the widely-used Shannon mutual information as well as Tsallis mutual information, the proposed method is computationally more efficient without sacrificing registration accuracy.