Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Binding of miR398 to mRNA of Chaperone and Superoxide Dismutase Genes in Plants

Among all microRNAs (miRNAs) in 12 plant species investigated in this study, only miR398 targeted the copper chaperone for superoxide dismutase (CCS). The nucleotide sequences of miRNA binding sites were located in the mRNA protein-coding sequence (CDS) and were highly homologous. These binding sites in CCS mRNA encoded a conservative GDLGTL hexapeptide. The binding sites for miR398 in the CDS of superoxide dismutase 1 mRNA encoded GDLGN pentapeptide. The conservative miR398 binding site located in the CDS of superoxide dismutase 2 mRNA encoded the GDLGNI hexapeptide. The miR398 binding site in the CDS of superoxide dismutase 3 mRNA encoded the GDLGNI or GDLGNV hexapeptide. Gene expression of the entire superoxide dismutase family in the studied plant species was regulated only by miR398. All members of the miR398 family, i.e. miR398a,b,c were connected to one site for each CuZnSOD and chaperone mRNA.

Autism Spectrum Disorder: Main Problem Waiting for Solution in Kingdom of Saudi Arabia

Autism Spectrum Disorders (ASDs) are characterized by abnormalities in social interaction and communication, as well as repetitive and stereotyped behaviors. Although various studies have been conducted in ASDs etiology across the world, it seems that they are still unknown in Middle East. Some scientific researches have been conducted on ASDs in Middle East (ME) especially in Kingdom of Saudi Arabia (KSA). A systematic literature review was performed to identify the ASDs studies in KSA. Accordingly, PubMed, ISI web of Science and Google were searched to find KSA and ME studies in ASDs. The main focus of this review work is to outline an improved understanding of the underpinnings of ASD in order to achieve therapeutic interventions and we will discuss the main problem we waiting for solution with reference with role of Transcranial Magnetic Stimulation (TMS) to modulate cortical activity improve understanding ASD.

Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory

The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.

Optimization of the Nutrient Supplients for Cellulase Production with the Basal Medium Palm Oil Mill Effluent

A statistical optimization was studied to design a media composition to produce optimum cellulolytic enzyme where palm oil mill effluent (POME) as a basal medium and filamentous fungus, Trichoderma reesei RUT-C30 were used in the liquid state bioconversion(LSB). 2% (w/v) total suspended solid, TSS, of the POME supplemented with 1% (w/v) cellulose, 0.5%(w/v) peptone and 0.02% (v/v) Tween 80 was estimated to produce the optimum CMCase activity of 18.53 U/ml through the statistical analysis followed by the faced centered central composite design(FCCCD). The probability values of cellulose (

A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)

The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.

Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion

The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.

A Study of Flow and Sedimentation at the Basins of Khoozestan Province Rivers: A Case Study of Boneh Basht Pumping Station

The present paper is a case study about exploitation of Kheir Abad river (Khoozestan, Iran) water resources and the problems caused by river sediments around the pumping stations. The weak points and strong points of Boneh Basht pumping station have been studied by experienced experts, work teams, and consulting engineers and technical and executive solutions have been suggested. Therefore, the suggestions of this article are based on the performed studies and are proposed in order to evaluate the logical solutions. Rather complicated processes resulting from the interaction of water flows and sediments observed at Boneh Basht pumping station occur at other pumping stations in almost the same way. Therefore, Boneh Basht pumping station can be selected as a sample (pilot) and up-to-date theories and experiences can be applied to this station and the results can be offered to other stations.

A 1.5V,100MS/s,12-bit Current-Mode CMOSS ample-and-Hold Circuit

A high-linearity and high-speed current-mode sampleand- hold circuit is designed and simulated using a 0.25μm CMOS technology. This circuit design is based on low voltage and it utilizes a fully differential circuit. Due to the use of only two switches the switch related noise has been reduced. Signal - dependent -error is completely eliminated by a new zero voltage switching technique. The circuit has a linearity error equal to ±0.05μa, i.e. 12-bit accuracy with a ±160 μa differential output - input signal frequency of 5MHZ, and sampling frequency of 100 MHZ. Third harmonic is equal to –78dB.

Incorporating Semantic Similarity Measure in Genetic Algorithm : An Approach for Searching the Gene Ontology Terms

The most important property of the Gene Ontology is the terms. These control vocabularies are defined to provide consistent descriptions of gene products that are shareable and computationally accessible by humans, software agent, or other machine-readable meta-data. Each term is associated with information such as definition, synonyms, database references, amino acid sequences, and relationships to other terms. This information has made the Gene Ontology broadly applied in microarray and proteomic analysis. However, the process of searching the terms is still carried out using traditional approach which is based on keyword matching. The weaknesses of this approach are: ignoring semantic relationships between terms, and highly depending on a specialist to find similar terms. Therefore, this study combines semantic similarity measure and genetic algorithm to perform a better retrieval process for searching semantically similar terms. The semantic similarity measure is used to compute similitude strength between two terms. Then, the genetic algorithm is employed to perform batch retrievals and to handle the situation of the large search space of the Gene Ontology graph. The computational results are presented to show the effectiveness of the proposed algorithm.

Riemann-Liouville Fractional Calculus and Multiindex Dzrbashjan-Gelfond-Leontiev Differentiation and Integration with Multiindex Mittag-Leffler Function

The multiindex Mittag-Leffler (M-L) function and the multiindex Dzrbashjan-Gelfond-Leontiev (D-G-L) differentiation and integration play a very pivotal role in the theory and applications of generalized fractional calculus. The object of this paper is to investigate the relations that exist between the Riemann-Liouville fractional calculus and multiindex Dzrbashjan-Gelfond-Leontiev differentiation and integration with multiindex Mittag-Leffler function.

New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Retrieving Extended High Dynamic Range from Digital Negative Image - An Experiment on Architectural Photo Imaging

The paper explores the development of an optimization of method and apparatus for retrieving extended high dynamic range from digital negative image. Architectural photo imaging can benefit from high dynamic range imaging (HDRI) technique for preserving and presenting sufficient luminance in the shadow and highlight clipping image areas. The HDRI technique that requires multiple exposure images as the source of HDRI rendering may not be effective in terms of time efficiency during the acquisition process and post-processing stage, considering it has numerous potential imaging variables and technical limitations during the multiple exposure process. This paper explores an experimental method and apparatus that aims to expand the dynamic range from digital negative image in HDRI environment. The method and apparatus explored is based on a single source of RAW image acquisition for the use of HDRI post-processing. It will cater the optimization in order to avoid and minimize the conventional HDRI photographic errors caused by different physical conditions during the photographing process and the misalignment of multiple exposed image sequences. The study observes the characteristics and capabilities of RAW image format as digital negative used for the retrieval of extended high dynamic range process in HDRI environment.

Higher Plants Ability to Assimilate Explosives

The ability of agricultural and decorative plants to absorb and detoxify TNT and RDX has been studied. All tested 8 plants, grown hydroponically, were able to absorb these explosives from water solutions: Alfalfa > Soybean > Chickpea> Chikling vetch >Ryegrass > Mung bean> China bean > Maize. Differently from TNT, RDX did not exhibit negative influence on seed germination and plant growth. Moreover, some plants, exposed to RDX containing solution were increased in their biomass by 20%. Study of the fate of absorbed [1-14ðí]-TNT revealed the label distribution in low and high-molecular mass compounds, both in roots and above ground parts of plants, prevailing in the later. Content of 14ðí in lowmolecular compounds in plant roots are much higher than in above ground parts. On the contrary, high-molecular compounds are more intensively labeled in aboveground parts of soybean. Most part (up to 70%) of metabolites of TNT, formed either by enzymatic reduction or oxidation, is found in high molecular insoluble conjugates. Activation of enzymes, responsible for reduction, oxidation and conjugation of TNT, such as nitroreductase, peroxidase, phenoloxidase and glutathione S-transferase has been demonstrated. Among these enzymes, only nitroreductase was shown to be induced in alfalfa, exposed to RDX. The increase in malate dehydrogenase activities in plants, exposed to both explosives, indicates intensification of Tricarboxylic Acid Cycle, that generates reduced equivalents of NAD(P)H, necessary for functioning of the nitroreductase. The hypothetic scheme of TNT metabolism in plants is proposed.

Analysis of Sonogram Images of Thyroid Gland Based on Wavelet Transform

Sonogram images of normal and lymphocyte thyroid tissues have considerable overlap which makes it difficult to interpret and distinguish. Classification from sonogram images of thyroid gland is tackled in semiautomatic way. While making manual diagnosis from images, some relevant information need not to be recognized by human visual system. Quantitative image analysis could be helpful to manual diagnostic process so far done by physician. Two classes are considered: normal tissue and chronic lymphocyte thyroid (Hashimoto's Thyroid). Data structure is analyzed using K-nearest-neighbors classification. This paper is mentioned that unlike the wavelet sub bands' energy, histograms and Haralick features are not appropriate to distinguish between normal tissue and Hashimoto's thyroid.

String Searching in Dispersed Files using MDS Convolutional Codes

In this paper, we propose use of convolutional codes for file dispersal. The proposed method is comparable in complexity to the information Dispersal Algorithm proposed by M.Rabin and for particular choices of (non-binary) convolutional codes, is almost as efficient as that algorithm in terms of controlling expansion in the total storage. Further, our proposed dispersal method allows string search.

Implementation of TinyHash based on Hash Algorithm for Sensor Network

In recent years, it has been proposed security architecture for sensor network.[2][4]. One of these, TinySec by Chris Kalof, Naveen Sastry, David Wagner had proposed Link layer security architecture, considering some problems of sensor network. (i.e : energy, bandwidth, computation capability,etc). The TinySec employs CBC_mode of encryption and CBC-MAC for authentication based on SkipJack Block Cipher. Currently, This TinySec is incorporated in the TinyOS for sensor network security. This paper introduces TinyHash based on general hash algorithm. TinyHash is the module in order to replace parts of authentication and integrity in the TinySec. it implies that apply hash algorithm on TinySec architecture. For compatibility about TinySec, Components in TinyHash is constructed as similar structure of TinySec. And TinyHash implements the HMAC component for authentication and the Digest component for integrity of messages. Additionally, we define the some interfaces for service associated with hash algorithm.

Fluid Flow Analysis and Design of a Flow Distributor in a Domestic Gas Boiler Using a Commercial CFD Software

The aim of the study was to investigate the possible use of commercial Computational Fluid Dynamics (CFD) software in the design process of a domestic gas boiler. Because of the limited computational resources some simplifications had to be made in order to contribute to the design in a reasonable timescale. The porous media model was used in order to simulate the influence of the pressure drop characteristic of particular elements of a heat transfer system on the water-flow distribution in the system. Further, a combination of CFD analyses and spread sheet calculations was used in order to solve the flow distribution problem.