Mercury Removal Techniques for Industrial Waste Water

The current work focuses on rephrasing the harmful effects of mercury that is being released from a number of sources. Most of the sources are from the industrial waste water. Different techniques of mercury removal have been discussed and a brief comparison among these has been made. The experimental work has been conducted for two most widely used methods of mercury removal and comparison in terms of their efficiency has been made.

SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data

With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.

Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.

Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Simultaneous Term Structure Estimation of Hazard and Loss Given Default with a Statistical Model using Credit Rating and Financial Information

The objective of this study is to propose a statistical modeling method which enables simultaneous term structure estimation of the risk-free interest rate, hazard and loss given default, incorporating the characteristics of the bond issuing company such as credit rating and financial information. A reduced form model is used for this purpose. Statistical techniques such as spline estimation and Bayesian information criterion are employed for parameter estimation and model selection. An empirical analysis is conducted using the information on the Japanese bond market data. Results of the empirical analysis confirm the usefulness of the proposed method.

File System-Based Data Protection Approach

As data to be stored in storage subsystems tremendously increases, data protection techniques have become more important than ever, to provide data availability and reliability. In this paper, we present the file system-based data protection (WOWSnap) that has been implemented using WORM (Write-Once-Read-Many) scheme. In the WOWSnap, once WORM files have been created, only the privileged read requests to them are allowed to protect data against any intentional/accidental intrusions. Furthermore, all WORM files are related to their protection cycle that is a time period during which WORM files should securely be protected. Once their protection cycle is expired, the WORM files are automatically moved to the general-purpose data section without any user interference. This prevents the WORM data section from being consumed by unnecessary files. We evaluated the performance of WOWSnap on Linux cluster.

Direction to Manage OTOP Entrepreneurship Based on Local Wisdom

The OTOP Entrepreneurship that used to create substantial source of income for local Thai communities are now in a stage of exigent matters that required assistances from public sectors due to over Entrepreneurship of duplicative ideas, unable to adjust costs and prices, lack of innovation, and inadequate of quality control. Moreover, there is a repetitive problem of middlemen who constantly corner the OTOP market. Local OTOP producers become easy preys since they do not know how to add more values, how to create and maintain their own brand name, and how to create proper packaging and labeling. The suggested solutions to local OTOP producers are to adopt modern management techniques, to find knowhow to add more values to products and to unravel other marketing problems. The objectives of this research are to study the prevalent OTOP products management and to discover direction to manage OTOP products to enhance the effectiveness of OTOP Entrepreneurship in Nonthaburi Province, Thailand. There were 113 participants in this study. The research tools can be divided into two parts: First part is done by questionnaire to find responses of the prevalent OTOP Entrepreneurship management. Second part is the use of focus group which is conducted to encapsulate ideas and local wisdom. Data analysis is performed by using frequency, percentage, mean, and standard deviation as well as the synthesis of several small group discussions. The findings reveal that 1) Business Resources: the quality of product is most important and the marketing of product is least important. 2) Business Management: Leadership is most important and raw material planning is least important. 3) Business Readiness: Communication is most important and packaging is least important. 4) Support from public sector: Certified from the government is most important and source of raw material is the least important.

Comparison of BER Performances for Conventional and Non-Conventional Mapping Schemes Used in OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is one of the techniques for high speed data rate communication with main consideration for 4G and 5G systems. In OFDM, there are several mapping schemes which provide a way of parallel transmission. In this paper, comparisons of mapping schemes used by some standards have been made and also has been discussed about the performance of the non-conventional modulation technique. The Comparisons of Bit Error Rate (BER) performances for conventional and non-conventional modulation schemes have been done using MATLAB software. Mentioned schemes used in OFDM system can be selected on the basis of the requirement of power or spectrum efficiency and BER analysis.

Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis

The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.

ICF Neutron Detection Techniques Based on Doped ZnO Crystal

Ultrafast doped zinc oxide crystal promised us a good opportunity to build new instruments for ICF fusion neutron measurement. Two pulsed neutron detectors based on ZnO crystal wafer have been conceptually designed, the superfast ZnO timing detector and the scintillation recoil proton neutron detection system. The structure of these detectors was presented, and some characters were studied as well. The new detectors could be much faster than existing systems, and would be more competent for ICF neutron diagnostics.

Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks

Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.

An Efficient Spam Mail Detection by Counter Technique

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

New VLSI Architecture for Motion Estimation Algorithm

This paper presents an efficient VLSI architecture design to achieve real time video processing using Full-Search Block Matching (FSBM) algorithm. The design employs parallel bank architecture with minimum latency, maximum throughput, and full hardware utilization. We use nine parallel processors in our architecture and each controlled by a state machine. State machine control implementation makes the design very simple and cost effective. The design is implemented using VHDL and the programming techniques we incorporated makes the design completely programmable in the sense that the search ranges and the block sizes can be varied to suit any given requirements. The design can operate at frequencies up to 36 MHz and it can function in QCIF and CIF video resolution at 1.46 MHz and 5.86 MHz, respectively.

Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis

The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.

An Engineering Approach to Forecast Volatility of Financial Indices

By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.

Code-Aided Turbo Channel Estimation for OFDM Systems with NB-LDPC Codes

In this paper channel estimation techniques are considered as the support methods for OFDM transmission systems based on Non Binary LDPC (Low Density Parity Check) codes. Standard frequency domain pilot aided LS (Least Squares) and LMMSE (Linear Minimum Mean Square Error) estimators are investigated. Furthermore, an iterative algorithm is proposed as a solution exploiting the NB-LDPC channel decoder to improve the performance of the LMMSE estimator. Simulation results of signals transmitted through fading mobile channels are presented to compare the performance of the proposed channel estimators.

A Method to Improve Test Process in Federal Enterprise Architecture Framework Using ISTQB Framework

Enterprise Architecture (EA) is a framework for description, coordination and alignment of all activities across the organization in order to achieve strategic goals using ICT enablers. A number of EA-compatible frameworks have been developed. We, in this paper, mainly focus on Federal Enterprise Architecture Framework (FEAF) since its reference models are plentiful. Among these models we are interested here in its business reference model (BRM). The test process is one important subject of an EA project which is to somewhat overlooked. This lack of attention may cause drawbacks or even failure of an enterprise architecture project. To address this issue we intend to use International Software Testing Qualification Board (ISTQB) framework and standard test suites to present a method to improve EA testing process. The main challenge is how to communicate between the concepts of EA and ISTQB. In this paper, we propose a method for integrating these concepts.

Optimal Calculation of Partial Transmission Ratios of Four-Step Helical Gearboxes for Getting Minimal Gearbox Length

This paper presents a new study on the applications of optimization and regression analysis techniques for optimal calculation of partial ratios of four-step helical gearboxes for getting minimal gearbox length. In the paper, basing on the moment equilibrium condition of a mechanic system including four gear units and their regular resistance condition, models for determination of the partial ratios of the gearboxes are proposed. In particular, explicit models for calculation of the partial ratios are proposed by using regression analysis. Using these models, the determination of the partial ratios is accurate and simple.

Comparison between Associative Classification and Decision Tree for HCV Treatment Response Prediction

Combined therapy using Interferon and Ribavirin is the standard treatment in patients with chronic hepatitis C. However, the number of responders to this treatment is low, whereas its cost and side effects are high. Therefore, there is a clear need to predict patient’s response to the treatment based on clinical information to protect the patients from the bad drawbacks, Intolerable side effects and waste of money. Different machine learning techniques have been developed to fulfill this purpose. From these techniques are Associative Classification (AC) and Decision Tree (DT). The aim of this research is to compare the performance of these two techniques in the prediction of virological response to the standard treatment of HCV from clinical information. 200 patients treated with Interferon and Ribavirin; were analyzed using AC and DT. 150 cases had been used to train the classifiers and 50 cases had been used to test the classifiers. The experiment results showed that the two techniques had given acceptable results however the best accuracy for the AC reached 92% whereas for DT reached 80%.

Waste Management, Strategies and Situation in South Africa: An Overview

This paper highlights some interesting facts on South African-s waste situation and management strategies, in particular the Integrated Waste Management. South Africa supports a waste hierarchy by promoting cleaner production, waste minimisation, reuse, recycling and waste treatment with disposal and remediation as the last preferred options in waste management. The drivers for waste management techniques are identified as increased demand for waste service provision; increased demand for waste minimisation; recycling and recovery; land use, physical and environmental limitations; and socio-economic and demographic factors. The South African government recognizes the importance of scientific research as outlined on the white paper on Integrated Pollution and Waste Management (IP and WM) (DEAT, 2000).