ICF Neutron Detection Techniques Based on Doped ZnO Crystal

Ultrafast doped zinc oxide crystal promised us a good opportunity to build new instruments for ICF fusion neutron measurement. Two pulsed neutron detectors based on ZnO crystal wafer have been conceptually designed, the superfast ZnO timing detector and the scintillation recoil proton neutron detection system. The structure of these detectors was presented, and some characters were studied as well. The new detectors could be much faster than existing systems, and would be more competent for ICF neutron diagnostics.




References:
[1] M. Tanaka, M. Nishikino, H. Yamatani, et al, "Hydrothermal method
grown large-sized zinc oxide single crystal as fast scintillator for future
extreme ultraviolet lithography", Appl. Phys. Lett., vol. 91, pp. 231117,
2007.
[2] P. J. Simpson, R. Tjossem, A. W. Hunt, et al, "Superfast timing
performance from ZnO scintillators", Nucl. Instr. and Meth. A, vol. 505,
pp. 82-84, 2003.
[3] Yanagida T, Fujimoto Y, Yoshikawa A, et al, "Scintillation Properties of
In Doped ZnO With Different In Concentrations", IEEE Trans. Nucl. Sci.,
vol. 57, pp. 1325-1328, June 2010.
[4] E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber,
"Development of ZnO:Ga as an ultra-fast scintillator", Nucl. Instr. and
Meth. A, vol. 601, pp. 358-363. 2009.
[5] K. Yamanoi, K. Sakai, T. Nakazato, et al, "Response-time improved
hydrothermal-method-grown ZnO scintillator for XFEL
timing-observation", Opt. Mater., vol. 32, pp. 1305-1308, 2010.
[6] V. Y. Glebov, C. Stoeckl, T. C. Sangster, et al, "Prototypes of National
Ignition Facility neutron time-of-flight detectors tested on OMEGA",
Rev. Sci. Instrum., vol. 75, pp. 3559-3562, 2004.
[7] Cermet Inc., www.cermetinc.com
[8] Y. L. Ma, X. P. Ouyang, L. Chen, et al, "Time and energy response of
ZnO :Ga crystal to hard X-ray", High Power Laser and Particle Beams,
vol. 20, pp. 2088-2090, Dec. 2008 (in Chinese).
[9] E. I. Moses, "The National Ignition Facility (NIF): A path to fusion
energy", Energy Conversion and Management, vol. 49, pp. 1795-1802,
2008
[10] C. Lion, "The LMJ program: An overview", Journal of Physics:
Conference Series, vol. 244, pp. 12003, 2010.
[11] S. E. Jiang, Y. K. Ding, W. Y. Miao, et al, "Recent progress of inertial
confinement fusion experiments in China", Sci China, vol. 39, pp.
1571-1583, Sep 2009 (in Chinese).
[12] V. Y. Glebov, D. D. Meyerhofer, T. C. Sangster, et al, "Development of
nuclear diagnostics for the National Ignition Facility", Rev. Sci. Instrum.,
vol. 77, pp. 10E715, 2006.
[13] T. J. Murphy, C. W. Barnes, R. R. Berggren, et al, "Nuclear diagnostics
for the National Ignition Facility", Rev. Sci. Instrum., vol. 72, pp. 773-779,
2001.
[14] J. D. Lindl, P. Amendt, R. L. Berger, et al, "The physics basis for ignition
using indirect-drive targets on the National Ignition Facility", Phys
Plasmas, vol.11, pp.339-491, Feb 2004.
[15] R. E. Chrien, and J. D. Strachan, "Selective fast neutron detector", Rev.
Sci. Instrum., vol. 51, pp. 1638-1640, Dec 1980.
[16] V. Y. Glebov, C. Stoeckl, T. C. Sangster, et al, "NIF Neutron Bang Time
Detector Prototype Test on OMEGA", IEEE Trans. Plasma Sci., vol. 33,
pp. 70-76, Feb 2005.
[17] L. Grigorjeva, D. Millers, K. Smits, et al, "The luminescence of ZnO
ceramics", Radiat. Meas., vol. 45, pp. 441-443, 2010.
[18] M. J. Moran, V. Y. Glebov, C. Stoeckl, et al, "PROTEX: A proton-recoil
detector for inertial confinement fusion neutrons", Rev. Sci. Instrum., vol.
76, pp. 23506, 2005.
[19] S. Agostinelli, J. Allison, K. Amako, et al, "GEANT4-a simulation
toolkit", Nucl. Instr. and Meth. A, vol. 506, pp. 250-303, 2003.