Towards Benchmarking English Residential Gas Consumption

The UK Government has emphasized the role of Local Authorities as a key player in its flagship residential energy efficiency strategies, by identifying and targeting areas for energy efficiency improvements. Residential energy consumption in England is characterized by significant geographical variation in energy demand, which makes centralized targeting of areas for energy efficiency intervention difficult. This paper draws on research which aims to understand how demographic, social, economic, urban form and climatic factors influence the geographical variations in English residential gas consumption. The paper reports the findings of a multiple regression model that shows how 64% of the geographical variation in residential gas consumption is accounted for by variations in these factors. Results from this study, after further refinement and validation, can be used by Local Authorities to identify areas within their boundaries that have higher than expected gas consumption, these may be prime targets for energy efficiency initiatives.

Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Determining the Best Method of Stability Landslide by Using of DSS (Case Study: Landslide in Hasan Salaran, Kurdistan Province in Iran)

One of the processes of slope that occurs every year in Iran and some parts of world and cause a lot of criminal and financial harms is called landslide. They are plenty of method to stability landslide in soil and rock slides. The use of the best method with the least cost and in the shortest time is important for researchers. In this research, determining the best method of stability is investigated by using of Decision Support systems. DSS is made for this purpose and was used (for Hasan Salaran area in Kurdistan). Field study data from topography, slope, geology, geometry of landslide and the related features was used. The related data entered decision making managements programs (DSS) (ALES).Analysis of mass stability indicated the instability potential at present. Research results show that surface and sub surface drainage the best method of stabilizing. Analysis of stability shows that acceptable increase in security coefficient is a consequence of drainage.

Soil Moisture Content in Hill-Filed Side Slope

The soil moisture content is an important property of the soil. The results of mean weekly gravimetric soil moisture content, measured for the three soil layers within the A horizon, showed that it was higher for the top 5 cm over the whole period of monitoring (15/7/2004 up to 10/11/05) with the variation becoming greater during winter time. This reflects the pattern of rainfall in Ireland which is spread over the whole year and shows that light rainfall events during summer time were compensated by loss through evapotranspiration, but only in the top 5 cm of soil. This layer had the highest porosity and highest moisture holding capacity due to the high content of organic matter. The gravimetric soil moisture contents of the top 5 cm and the underlying 5-15 and 15-25 cm layers show that bottom site of the Hill Field had higher soil moisture content than the middle and top sites during the whole period of monitoring.

Six Sigma Solutions and its Benefit-Cost Ratio for Quality Improvement

This is an application research presenting the improvement of production quality using the six sigma solutions and the analyses of benefit-cost ratio. The case of interest is the production of tile-concrete. Such production has faced with the problem of high nonconforming products from an inappropriate surface coating and had low process capability based on the strength property of tile. Surface coating and tile strength are the most critical to quality of this product. The improvements followed five stages of six sigma solutions. After the improvement, the production yield was improved to 80% as target required and the defective products from coating process was remarkably reduced from 29.40% to 4.09%. The process capability based on the strength quality was increased from 0.87 to 1.08 as customer oriented. The improvement was able to save the materials loss for 3.24 millions baht or 0.11 million dollars. The benefits from the improvement were analyzed from (1) the reduction of the numbers of non conforming tile using its factory price for surface coating improvement and (2) the materials saved from the increment of process capability. The benefit-cost ratio of overall improvement was high as 7.03. It was non valuable investment in define, measure, analyses and the initial of improve stages after that it kept increasing. This was due to there were no benefits in define, measure, and analyze stages of six sigma since these three stages mainly determine the cause of problem and its effects rather than improve the process. The benefit-cost ratio starts existing in the improve stage and go on. Within each stage, the individual benefitcost ratio was much higher than the accumulative one as there was an accumulation of cost since the first stage of six sigma. The consideration of the benefit-cost ratio during the improvement project helps make decisions for cost saving of similar activities during the improvement and for new project. In conclusion, the determination of benefit-cost ratio behavior through out six sigma implementation period provides the useful data for managing quality improvement for the optimal effectiveness. This is the additional outcome from the regular proceeding of six sigma.

Electrical Resistivity of Subsurface: Field and Laboratory Assessment

The objective of this paper is to study the electrical resistivity complexity between field and laboratory measurement, in order to improve the effectiveness of data interpretation for geophysical ground resistivity survey. The geological outcrop in Penang, Malaysia with an obvious layering contact was chosen as the study site. Two dimensional geoelectrical resistivity imaging were used in this study to maps the resistivity distribution of subsurface, whereas few subsurface sample were obtained for laboratory advance. In this study, resistivity of samples in original conditions is measured in laboratory by using time domain low-voltage technique, particularly for granite core sample and soil resistivity measuring set for soil sample. The experimentation results from both schemes are studied, analyzed, calibrated and verified, including basis and correlation, degree of tolerance and characteristics of substance. Consequently, the significant different between both schemes is explained comprehensively within this paper.

Analytical Proposal to Damage Assessment of Buried Continuous Pipelines during External Blast Loading

In this paper, transversal vibration of buried pipelines during loading induced by underground explosions is analyzed. The pipeline is modeled as an infinite beam on an elastic foundation, so that soil-structure interaction is considered by means of transverse linear springs along the pipeline. The pipeline behavior is assumed to be ideal elasto-plastic which an ultimate strain value limits the plastic behavior. The blast loading is considered as a point load, considering the affected length at some point of the pipeline, in which the magnitude decreases exponentially with time. A closed-form solution for the quasi-static problem is carried out for both elastic and elasticperfect plastic behaviors of pipe materials. At the end, a comparative study on steel and polyethylene pipes with different sizes buried in various soil conditions, affected by a predefined underground explosion is conducted, in which effect of each parameter is discussed.

Study of Mechanical Properties for the Aluminum Bronze Matrix Composites of Hot Pressing

The aluminum bronze matrix alumina composites using hot press and resin infiltration were investigated to study their porosities, hardness, bending strengths, and microstructures. The experiment results show that the hardness of the sintered composites with the decrease of porosity increases. The composites without and with resin infiltration have about HRF 42-61 of about 34-40% of porosity and about HRF 62-83 of about 30-36% of porosity, respectively. Besides, the alumina composites contain a more amount of iron and nickel powders would cause a lower bending strength due to forming some weaker bonding among the iron, nickel, copper, aluminum under this hot pressing of shorter time.

A New Design of Mobile Thermoelectric Power Generation System

This paper presents a compact thermoelectric power generator system based on temperature difference across the element. The system can transfer the burning heat energy to electric energy directly. The proposed system has a thermoelectric generator and a power control box. In the generator, there are 4 thermoelectric modules (TEMs), each of which uses 2 thermoelectric chips (TEs) and 2 cold sinks, 1 thermal absorber, and 1 thermal conduction flat board. In the power control box, there are 1 storing energy device, 1 converter, and 1 inverter. The total net generating power is about 11W. This system uses commercial portable gas stoves or burns timber or the coal as the heat source, which is easily obtained. It adopts solid-state thermoelectric chips as heat inverter parts. The system has the advantages of being light-weight, quite, and mobile, requiring no maintenance, and havng easily-supplied heat source. The system can be used a as long as burning is allowed. This system works well for highly-mobilized outdoors situations by providing a power for illumination, entertainment equipment or the wireless equipment at refuge. Under heavy storms such as typhoon, when the solar panels become ineffective and the wind-powered machines malfunction, the thermoelectric power generator can continue providing the vital power.

Meta-Classification using SVM Classifiers for Text Documents

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.

Modeling of Pulsatile Blood Flow in a Weak Magnetic Field

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.

Pin type Clamping Attachment for Remote Setup of Machining Process

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

A Fiber Optic Interferometric Sensor for Dynamic Measurement

An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.

Visual Arts as a Vehicle of Communication

This paper reports a case study on how a conceptual and analytical thinking approach was used in Art and Design Department at Multimedia University (Malaysia) in addressing the issues of one nation and its impact in the society through artworks. The art project was designed for students to increase the know-how and develop creative thinking in design and communication. Goals of the design project were: (1) to develop creative thinking in design and communication, (2) to increase student understanding on the process of problem solving for design work, and (3) to use design elements and principles to generate interest, attention and emotional responses. An exhibition entitled "One Nation" was showcased to local and international viewers consisting of the general public, professionals, academics, artists and students. Findings indicate that the project supported several visual art standards, as well as generated awareness in the society. This project may be of interest to current and future art educators and others interested in the potential of utilizing global issues as content for art, community and environment studies for the purpose of educational art.

CBCTL: A Reasoning System of TemporalEpistemic Logic with Communication Channel

This paper introduces a temporal epistemic logic CBCTL that updates agent-s belief states through communications in them, based on computational tree logic (CTL). In practical environments, communication channels between agents may not be secure, and in bad cases agents might suffer blackouts. In this study, we provide inform* protocol based on ACL of FIPA, and declare the presence of secure channels between two agents, dependent on time. Thus, the belief state of each agent is updated along with the progress of time. We show a prover, that is a reasoning system for a given formula in a given a situation of an agent ; if it is directly provable or if it could be validated through the chains of communications, the system returns the proof.

Image Similarity: A Genetic Algorithm Based Approach

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation

The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.

From Mother Tongue Education to Multilingual Higher Education

Through the time, the higher education has changed the learning system since mother tongue to bilingual, and in this new century has been coming develop a multilingual education. All as part of globalization process of the countries and the education. Nevertheless, this change only has been effectively in countries of the first world, the rest have been lagging. Therefore, these countries require strengthen their higher education systems through models that give way to multilingual and bilingual education. In this way, shows a new model adapted from a systemic form to allow a higher bilingual and multilingual education in Latin America. This systematization aims to increase the skills and competencies student’s, decrease the time learning of a second tongue, add to multilingualism in the American Latin Universities, also, contribute to position the region´s countries in a better global status, and stimulate the development of new research in this area.

Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.