Entrepreneurial Activity - Indicator of Regional Development in Croatia

Given that entrepreneurship is a very significant factor of regional development, it is necessary to approach systematically the development with measures of regional politics. According to international classification The Nomenclature of Territorial Units for Statistics (NUTS II), there are three regions in Croatia. The indicators of entrepreneurial activities on the national level of Croatia are analyzed in the paper, taking into consideration the results of referent research. The level of regional development is shown based on the analysis of entrepreneurs- operations. The results of the analysis show a very unfavorable situation in entrepreneurial activities on the national level of Croatia. The origin of this situation is to be found in the surroundings with an expressed inequality of regional development, which is caused by the non-existence of a strategically directed regional policy. In this paper recommendations which could contribute to the reduction of regional inequality in Croatia, have been made.

Layered Multiple Description Coding For Robust Video Transmission Over Wireless Ad-Hoc Networks

This paper presents a video transmission system using layered multiple description (coding (MDC) and multi-path transport for reliable video communications in wireless ad-hoc networks. The proposed MDC extends a quality-scalable H.264/AVC video coding algorithm to generate two independent descriptions. The two descriptions are transmitted over different paths to a receiver in order to alleviate the effect of unstable channel conditions of wireless adhoc networks. If one description is lost due to transmission erros, then the correctly received description is used to estimate the lost information of the corrupted description. The proposed MD coder maintains an adequate video quality as long as both description are not simultaneously lost. Simulation results show that the proposed MD coding combined with multi-path transport system is largely immune to packet losses, and therefore, can be a promising solution for robust video communications over wireless ad-hoc networks.

Belief Theory-Based Classifiers Comparison for Static Human Body Postures Recognition in Video

This paper presents various classifiers results from a system that can automatically recognize four different static human body postures in video sequences. The considered postures are standing, sitting, squatting, and lying. The three classifiers considered are a naïve one and two based on the belief theory. The belief theory-based classifiers use either a classic or restricted plausibility criterion to make a decision after data fusion. The data come from the people 2D segmentation and from their face localization. Measurements consist in distances relative to a reference posture. The efficiency and the limits of the different classifiers on the recognition system are highlighted thanks to the analysis of a great number of results. This system allows real-time processing.

Managing the Information System Life Cycle in Construction and Manufacturing

In this paper we present the information life cycle and analyze the importance of managing the corporate application portfolio across this life cycle. The approach presented here corresponds not just to the extension of the traditional information system development life cycle. This approach is based in the generic life cycle. In this paper it is proposed a model of an information system life cycle, supported in the assumption that a system has a limited life. But, this limited life may be extended. This model is also applied in several cases; being reported here two examples of the framework application in a construction enterprise and in a manufacturing enterprise.

On General Stability for Switched Positive Linear Systems with Bounded Time-varying Delays

This paper focuses on the problem of a common linear copositive Lyapunov function(CLCLF) existence for discrete-time switched positive linear systems(SPLSs) with bounded time-varying delays. In particular, applying system matrices, a special class of matrices are constructed in an appropriate manner. Our results reveal that the existence of a common copositive Lyapunov function can be related to the Schur stability of such matrices. A simple example is provided to illustrate the implication of our results.

Performance Modeling for Web based J2EE and .NET Applications

When architecting an application, key nonfunctional requirements such as performance, scalability, availability and security, which influence the architecture of the system, are some times not adequately addressed. Performance of the application may not be looked at until there is a concern. There are several problems with this reactive approach. If the system does not meet its performance objectives, the application is unlikely to be accepted by the stakeholders. This paper suggests an approach for performance modeling for web based J2EE and .Net applications to address performance issues early in the development life cycle. It also includes a Performance Modeling Case Study, with Proof-of-Concept (PoC) and implementation details for .NET and J2EE platforms.

Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation

In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.

Demulsification of Water-in-Oil Emulsions by Microwave Heating Technology

The mechanism of microwave heating is essentially that of dielectric heating. After exposing the emulsion to the microwave Electromagnetic (EM) field, molecular rotation and ionic conduction due to the penetration of (EM) into the emulsion are responsible for the internal heating. To determine the capability of microwave technology in demulsification of crude oil emulsions, microwave demulsification method was applied in a 50-50 % and 20- 80 % water-in-oil emulsions with microwave exposure time varied from 20-180 sec. Transient temperature profiles of water-in-oil emulsions inside a cylindrical container were measured. The temperature rise at a given location was almost horizontal (linear). The average rates of temperature increase of 50-50 % and 20-80 % water-in-oil emulsions are 0.351 and 0.437 oC/sec, respectively. The rate of temperature increase of emulsions decreased at higher temperature due to decreasing dielectric loss of water. These results indicate that microwave demulsification of water-in-oil emulsions does not require chemical additions. Microwave has the potential to be used as an alternative way in the demulsification process.

Efficient Supplies to Assembly Areas from Storage Stages

Guaranteeing the availability of the required parts at the scheduled time represents a key logistical challenge. This is especially important when several parts are required together. This article describes a tool that supports the positioning in the area of conflict between low stock costs and a high service level for a consumer.

Identification of Critical Success Factors in Non-Formal Service Sector Using Delphi Technique

The purpose of this study is to identify the critical success factors (CSFs) for the effective implementation of Six Sigma in non-formal service Sectors. Based on the survey of literature, the critical success factors (CSFs) for Six Sigma have been identified and are assessed for their importance in Non-formal service sector using Delphi Technique. These selected CSFs were put forth to the panel of expert to cluster them and prepare cognitive map to establish their relationship. All the critical success factors examined and obtained from the review of literature have been assessed for their importance with respect to their contribution to Six Sigma effectiveness in non formal service sector. The study is limited to the non-formal service sectors involved in the organization of religious festival only. However, the similar exercise can be conducted for broader sample of other non-formal service sectors like temple/ashram management, religious tours management etc. The research suggests an approach to identify CSFs of Six Sigma for Non-formal service sector. All the CSFs of the formal service sector will not be applicable to Non-formal services, hence opinion of experts was sought to add or delete the CSFs. In the first round of Delphi, the panel of experts has suggested, two new CSFs-“competitive benchmarking (F19) and resident’s involvement (F28)”, which were added for assessment in the next round of Delphi.  One of the CSFs-“fulltime six sigma personnel (F15)” has been omitted in proposed clusters of CSFs for non-formal organization, as it is practically impossible to deploy full time trained Six Sigma recruits.

Damping of Power System Oscillations by using coordinated tuning of POD and PSS with STATCOM

Static synchronous compensator (STATCOM) is a shunt connected voltage source converter (VSC), which can affect rapid control of reactive flow in the transmission line by controlling the generated a.c. voltage. The main aim of the paper is to design a power system installed with a Static synchronous compensator (STATCOM) and demonstrates the application of the linearised Phillips-heffron model in analyzing the damping effect of the STATCOM to improve power system oscillation stability. The proposed PI controller is designed to coordinate two control inputs: Voltage of the injection bus and capacitor voltage of the STATCOM, to improve the Dynamic stability of a SMIB system .The power oscillations damping (POD) control and power system stabilizer (PSS) and their coordinated action with proposed controllers are tested. The simulation result shows that the proposed damping controllers provide satisfactory performance in terms of improvements of dynamic stability of the system.

GridNtru: High Performance PKCS

Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.

Admission Control Approaches in the IMS Presence Service

In this research, we propose a weighted class based queuing (WCBQ) mechanism to provide class differentiation and to reduce the load for the IMS (IP Multimedia Subsystem) presence server (PS). The tasks of admission controller for the PS are demonstrated. Analysis and simulation models are developed to quantify the performance of WCBQ scheme. An optimized dropping time frame has been developed based on which some of the preexisting messages are dropped from the PS-buffer. Cost functions are developed and simulation comparison has been performed with FCFS (First Come First Served) scheme. The results show that the PS benefits significantly from the proposed queuing and dropping algorithm (WCBQ) during heavy traffic.

Modeling of Sensitivity for SPR Biosensors- New Aspects

The computer modeling is carried out for parameter of sensitivity of optoelectronic chemical and biosensors, using phenomena of surface plasmon resonance (SPR). The physical model of SPR-sensor-s is described with (or without) of modifications of sensitive gold film surface by a dielectric layer. The variants of increasing of sensitivity for SPR-biosensors, constructed on the principle gold – dielectric – biomolecular layer are considered. Two methods of mathematical treatment of SPR-curve are compared – traditional, with estimation of sensor-s response as shift of the SPRcurve minimum and proposed, for system with dielectric layer, using calculating of the derivative in the point of SPR-curve half-width.

Analysis on Fun Elements of the SNG in ANIPANG

This study analyzes on the Social Network Game (SNG), ANIPANG, in order to discover its unique fun elements, so that suggest new methodologies for development of SNGs. ANIPANG is the most popular SNG in the South Korea on 2012. Recently, the game industry is paying close attention to mobile-based SNGs due to the rapid prevalence of smart-phones and social network services. However, SNGs are not online games simply. Although the fun of most online games is the victory through competition with other players or the game system, the fun of SNG is the communication through the collaboration with other players. Thus, features of users and environments of game should be considered for the game industry and for the fun of SNG to users.

Evaluation of Multilevel Modulation Formats for 100Gbps Transmission with Direct Detection

This paper evaluate the multilevel modulation for different techniques such as amplitude shift keying (M-ASK), MASK, differential phase shift keying (M-ASK-Bipolar), Quaternary Amplitude Shift Keying (QASK) and Quaternary Polarization-ASK (QPol-ASK) at a total bit rate of 107 Gbps. The aim is to find a costeffective very high speed transport solution. Numerical investigation was performed using Monte Carlo simulations. The obtained results indicate that some modulation formats can be operated at 100Gbps in optical communication systems with low implementation effort and high spectral efficiency.

Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Regional Stability Analysis of Rotor-Ball Bearing and Rotor- Roller Bearing Systems Considering Switching Phenomena

In this study the regional stability of a rotor system which is supported on rolling bearings with radial clearance is studied. The rotor is assumed to be rigid. Due to radial clearance of bearings and dynamic configuration of system, each rolling elements of bearings has the possibility to be in contact with both of the races (under compression) or lose its contact. As a result, this change in dynamic of the system makes it to be known as switching system which is a type of Hybrid systems. In this investigation by adopting Multiple Lyapunov Function theorem and using Hamiltonian function as a candidate Lyapunov function, the stability of the system is studied. The purpose of this study is to inspect the regional stability of rotor-roller bearing and rotor-ball bearing systems.

A Decision Support System for Predicting Hospitalization of Hemodialysis Patients

Hemodialysis patients might suffer from unhealthy care behaviors or long-term dialysis treatments. Ultimately they need to be hospitalized. If the hospitalization rate of a hemodialysis center is high, its quality of service would be low. Therefore, how to decrease hospitalization rate is a crucial problem for health care. In this study we combined temporal abstraction with data mining techniques for analyzing the dialysis patients' biochemical data to develop a decision support system. The mined temporal patterns are helpful for clinicians to predict hospitalization of hemodialysis patients and to suggest them some treatments immediately to avoid hospitalization.

Quality of Groundwater in the Shallow Aquifers of a Paddy Dominated Agricultural River Basin, Kerala, India

Groundwater is an essential and vital component of our life support system. The groundwater resources are being utilized for drinking, irrigation and industrial purposes. There is growing concern on deterioration of groundwater quality due to geogenic and anthropogenic activities. Groundwater, being a fragile must be carefully managed to maintain its purity within standard limits. So, quality assessment and management are to be carried out hand-in-hand to have a pollution free environment and for a sustainable use. In order to assess the quality for consumption by human beings and for use in agriculture, the groundwater from the shallow aquifers (dug well) in the Palakkad and Chittur taluks of Bharathapuzha river basin - a paddy dominated agricultural basin (order=8th; L= 209 Km; Area = 6186 Km2), Kerala, India, has been selected. The water samples (n= 120) collected for various seasons, viz., monsoon-MON (August, 2005), postmonsoon-POM (December, 2005) and premonsoon-PRM (April, 2006), were analyzed for important physico-chemical attributes. Spatial and temporal variation of attributes do exist in the study area, and based on major cations and anions, different hydrochemical facies have been identified. Using Gibbs'diagram, rock dominance has been identified as the mechanism controlling groundwater chemistry. Further, the suitability of water for irrigation was determined by analyzing salinity hazard indicated by sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and sodium percent (%Na). Finally, stress zones in the study area were delineated using Arc GIS spatial analysis and various management options were recommended to restore the ecosystem.