The Effects of TiO2 Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties

Semiconductor nanomaterials like TiO2 nanoparticles (TiO2-NPs) approximately less than 100 nm in diameter have become a new generation of advanced materials due to their novel and interesting optical, dielectric, and photo-catalytic properties. With the increasing use of NPs in commerce, to date few studies have investigated the toxicological and environmental effects of NPs. Motivated by the importance of TiO2-NPs that may contribute to the cancer research field especially from the treatment prospective together with the fractal analysis technique, we have investigated the effect of TiO2-NPs on colony morphology in the dark condition using fractal dimension as a key morphological characterization parameter. The aim of this work is mainly to investigate the cytotoxic effects of TiO2-NPs in the dark on the growth of human cervical carcinoma (HeLa) cell colonies from morphological aspect. The in vitro studies were carried out together with the image processing technique and fractal analysis. It was found that, these colonies were abnormal in shape and size. Moreover, the size of the control colonies appeared to be larger than those of the treated group. The mean Df +/- SEM of the colonies in untreated cultures was 1.085±0.019, N= 25, while that of the cultures treated with TiO2-NPs was 1.287±0.045. It was found that the circularity of the control group (0.401±0.071) is higher than that of the treated group (0.103±0.042). The same tendency was found in the diameter parameters which are 1161.30±219.56 μm and 852.28±206.50 μm for the control and treated group respectively. Possible explanation of the results was discussed, though more works need to be done in terms of the for mechanism aspects. Finally, our results indicate that fractal dimension can serve as a useful feature, by itself or in conjunction with other shape features, in the classification of cancer colonies.

On-Time Performance and Service Regularity of Stage Buses in Mixed Traffic

Stage bus operated in the mixed traffic might always meet many problems about low quality and reliability of services. The low quality and reliability of bus service can make the system not attractive and directly reduce the interest of using bus service. This paper presents the result of field investigation and analysis of on-time performance and service regularity of stage bus in mixed traffic. Data for analysis was collected from the field by on-board observation along the Ipoh-Lumut corridor in Perak, Malaysia. From analysis and discussion, it can be concluded that on-time performance and service regularity varies depend on station, typical day, time period, operation characteristics of bus and characteristics of traffic. The on-time performance and service regularity of stage bus in mixed traffic can be derived by using data collected by onboard survey. It is clear that on-time performance and service regularity of the existing stage bus system was low.

Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.

GSM-Based Approach for Indoor Localization

Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.

Agile Index: Automotive Supply Chain

The supply chains (SCs) have to appeal to new management paradigms to improve their ability to respond rapidly and cost effectively to unpredictable changes in markets and increasing levels of environmental turbulence, both in terms of volume and variety. In this highly demanded context, the Agile paradigm provides the capabilities to SC quickly adapt to changes in the market requirements. The purpose of this paper is to suggest an Agile Index to assess the agility of the automotive companies and corresponding SCs. The proposed integrated assessment model incorporates Agile practices weighted according to their importance to the automotive SC competitiveness and obtained from the Delphi technique.

Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron

Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.

Effect of Different Treatments on the Periphyton Quantity and Quality in Experimental Fishponds

Periphyton development and composition were studied in three different treatments: (i) two fishpond units of wetland-type wastewater treatment pond systems, (ii) two fishponds in combined intensive-extensive fish farming systems and (iii) three traditional polyculture fishponds. Results showed that amounts of periphyton developed in traditional polyculture fishponds (iii) were different compared to the other treatments (i and ii), where the main function of ponds was stated wastewater treatment. Negative correlation was also observable between water quality parameters and periphyton production. The lower trophity, halobity and saprobity level of ponds indicated higher amount of periphyton. The dry matter content of periphyton was significantly higher in the samples, which were developed in traditional polyculture fishponds (2.84±3.02 g m-2 day-1, whereby the ash content in dry matter 74%), than samples taken from (i) (1.60±2.32 g m-2 day-1, 61%) and (ii) fishponds (0.65±0.45 g m-2 day-1, 81%).

Characterization of an Acetobacter Strain Isolated from Iranian Peach that Tolerates High Temperatures and Ethanol Concentrations

Vinegar is a precious food additive and complement as well as effective preservative against food spoilage. Recently traditional vinegar production has been improved using various natural substrates and fruits such as grape, palm, cherry, coconut, date, sugarcane, rice and balsam. These neoclassical fermentations resulted in several vinegar types with different tastes, fragrances and nutritional values because of applying various acetic acid bacteria as starters. Acetic acid bacteria include genera Acetobacter, Gluconacetobacter and Gluconobacter according to latest edition of Bergy-s Manual of Systematic Bacteriology that classifies genera on the basis of their 16s RNA differences. Acetobacter spp as the main vinegar starters belong to family Acetobacteraceae that are gram negative obligate aerobes, chemoorganotrophic bacilli that are oxidase negative and oxidize ethanol to acetic acid. In this research we isolated and identified a native Acetobacter strain with high acetic acid productivity and tolerance against high ethanol concentrations from Iranian peach as a summer delicious fruit that is very susceptible to food spoilage and decay. We used selective and specific laboratorial culture media such as Standard GYC, Frateur and Carr medium. Also we used a new industrial culture medium and a miniature fermentor with a new aeration system innovated by Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The isolated strain was successfully cultivated in modified Carr media with 2.5% and 5% ethanol simultaneously in high temperatures, 34 - 40º C after 96 hours of incubation period. We showed that the increase of ethanol concentration resulted in rising of strain sensitivity to high temperature. In conclusion we isolated and characterized a new Acetobacter strain from Iranian peach that could be considered as a potential strain for production of a new vinegar type, peach vinegar, with a delicious taste and advantageous nutritional value in food biotechnology and industrial microbiology.

Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Dynamic Modeling of Underwater Manipulator and Its Simulation

High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work

Analysis of Normal Penetration of Ogive -Nose Projectiles into Thin Metallic Plates

In this note, a theoretical model for analyzing of normal penetration of the ogive – nose projectile into metallic targets is presented .The failure is assumed to be asymmetry petalling and the analysis is performed by using the energy balance and work done .The work done consist of the work required for plastic deformation Wp, the work for transferring the matter to new position Wd and the work for bending of the petals Wb. In several studies, it has been shown that we can neglect the loss of energy by temperature. In this present study, in first, by assuming the crater formation after perforation, the value of work done is calculated during the normal penetration of conical projectiles into thin metallic targets. Then the value of residual velocity and ballistic limit of the projectile is predicated by using the energy balance. In final, theoretical and experimental results is compared.

Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms

In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.

Improving the Quality of e-learning Courses in Higher Education through Student Satisfaction

Thepurpose of the research is to characterize the levels of satisfaction of the students in e-learning post-graduate courses, taking into account specific dimensions of the course which were considered as benchmarks for the quality of this type of online learning initiative, as well as the levels of satisfaction towards each specific indicator identified in each dimension. It was also an aim of this study to understand how thesedimensions relate to one another. Using a quantitative research approach in the collection and analysis of the data, the study involves the participation of the students who attended on e-learning course in 2010/2011. The conclusions of this study suggest that online students present relatively high levels of satisfaction, which points towards a positive experience during the course. It is possible to note that there is a correlation between the different dimensions studied, consequently leading to different improvement strategies. Ultimately, this investigation aims to contribute to the promotion of quality and the success of e-learning initiatives in Higher Education.

Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms

In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.

Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Real Time Approach for Data Placement in Wireless Sensor Networks

The issue of real-time and reliable report delivery is extremely important for taking effective decision in a real world mission critical Wireless Sensor Network (WSN) based application. The sensor data behaves differently in many ways from the data in traditional databases. WSNs need a mechanism to register, process queries, and disseminate data. In this paper we propose an architectural framework for data placement and management. We propose a reliable and real time approach for data placement and achieving data integrity using self organized sensor clusters. Instead of storing information in individual cluster heads as suggested in some protocols, in our architecture we suggest storing of information of all clusters within a cell in the corresponding base station. For data dissemination and action in the wireless sensor network we propose to use Action and Relay Stations (ARS). To reduce average energy dissipation of sensor nodes, the data is sent to the nearest ARS rather than base station. We have designed our architecture in such a way so as to achieve greater energy savings, enhanced availability and reliability.

Journey on Image Clustering Based on Color Composition

Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.

A New Direct Updating Method for Undamped Structural Systems

A new numerical method for simultaneously updating mass and stiffness matrices based on incomplete modal measured data is presented. By using the Kronecker product, all the variables that are to be modified can be found out and then can be updated directly. The optimal approximation mass matrix and stiffness matrix which satisfy the required eigenvalue equation and orthogonality condition are found under the Frobenius norm sense. The physical configuration of the analytical model is preserved and the updated model will exactly reproduce the modal measured data. The numerical example seems to indicate that the method is quite accurate and efficient.

Protective Effect of Ethanolic Extract of Polyherbal Formulation on Carbon Tetrachloride Induced Liver Injury

Protective effect of ethanolic extract of polyherbal formulation (PHF) was studied on carbon tetrachloride induced liver damage on carbon tetrachloride induced liver damage. Treatment of rats with 250mg /kg body weight of ethanolic extract of PHF protected rats against carbon tetrachloride liver injury by significant lowerering 5’ nucleotidase (5’NT), Gamma Glutamyl transferase (GGT), Glutamate dehdyrogenasse (GDH) and Succinate Dehydrogenase (SDH) levels compared to control. Normalization in these enzyme levels indicates strong hepatoprotective property of PHF extract.

A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks

Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.