Effect of Different Treatments on the Periphyton Quantity and Quality in Experimental Fishponds

Periphyton development and composition were studied in three different treatments: (i) two fishpond units of wetland-type wastewater treatment pond systems, (ii) two fishponds in combined intensive-extensive fish farming systems and (iii) three traditional polyculture fishponds. Results showed that amounts of periphyton developed in traditional polyculture fishponds (iii) were different compared to the other treatments (i and ii), where the main function of ponds was stated wastewater treatment. Negative correlation was also observable between water quality parameters and periphyton production. The lower trophity, halobity and saprobity level of ponds indicated higher amount of periphyton. The dry matter content of periphyton was significantly higher in the samples, which were developed in traditional polyculture fishponds (2.84±3.02 g m-2 day-1, whereby the ash content in dry matter 74%), than samples taken from (i) (1.60±2.32 g m-2 day-1, 61%) and (ii) fishponds (0.65±0.45 g m-2 day-1, 81%).

Potential Role of Halophytic Macrophytes in Saline Effluent Treatment

The growth of the aquaculture industry has been associated with negative environmental impacts through the discharge of raw effluents into the adjacent receiving water bodies. Macrophytes from natural saline lakes, which have adaptability to the high salinity, can be suitable for saline effluent treatment. Eight emergent species from natural saline area were planted in an experimental gravel bed hydroponic mesocosm (GBH) which was treated with effluent water from an intensive fish farm using geothermal water. In order to examine the applicability of the halophytes in treatment processes, we tested the relative efficacy of total nitrogen (TN), total phosphorus (TP), potassium (K), sodium (Na), magnesium (Mg) and calcium (Ca) removal for the saline wastewater treatment. Four of the eight species, which were Phragmites australis, Typha angustifolia, Glyceria maxima, Scirpus lacustris spp. tabernaemontani could survive and contribute the experimental treatment.