Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis

The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process.

Decolourization of Melanoidin Containing Wastewater Using South African Coal Fly Ash

Batch adsorption of recalcitrant melanoidin using the abundantly available coal fly ash was carried out. It had low specific surface area (SBET) of 1.7287 m2/g and pore volume of 0.002245 cm3/g while qualitative evaluation of the predominant phases in it was done by XRD analysis. Colour removal efficiency was found to be dependent on various factors studied. Maximum colour removal was achieved around pH 6, whereas increasing sorbent mass from 10g/L to 200 g/L enhanced colour reduction from 25% to 86% at 298 K. Spontaneity of the process was suggested by negative Gibbs free energy while positive values for enthalpy change showed endothermic nature of the process. Non-linear optimization of error functions resulted in Freundlich and Redlich-Peterson isotherms describing sorption equilibrium data best. The coal fly ash had maximum sorption capacity of 53 mg/g and could thus be used as a low cost adsorbent in melanoidin removal.

Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction

This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.

TSM: A Design Pattern to Make Ad-hoc BPMs Easy and Inexpensive in Workflow-aware MISs

Despite so many years- development, the mainstream of workflow solutions from IT industries has not made ad-hoc workflow-support easy or inexpensive in MIS. Moreover, most of academic approaches tend to make their resulted BPM (Business Process Management) more complex and clumsy since they used to necessitate modeling workflow. To cope well with various ad-hoc or casual requirements on workflows while still keeping things simple and inexpensive, the author puts forth first the TSM design pattern that can provide a flexible workflow control while minimizing demand of predefinitions and modeling workflow, which introduces a generic approach for building BPM in workflow-aware MISs (Management Information Systems) with low development and running expenses.

Dynamic Analyses for Passenger Volume of Domestic Airline and High Speed Rail

Discrete choice model is the most used methodology for studying traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. In this study, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, different models are compared so as to propose the best one. From the results, systematic equations forecast better than single equation do. Models with the external variable, which is oil price, are better than models based on closed system assumption.

Error Estimates for Calculated Glomerular Filtration Rates

Glomerular filtration rate (GFR) is a measure of kidney function. It is usually estimated from serum concentrations of cystatin C or creatinine although there has been considerable debate in the literature about (i) the best equation to use and (ii) the variability in the correlation between the concentrations of creatinine and cystatin C. The equations for GFR can be written in a general form and from these I calculate the error of the GFR estimates associated with analyte measurement error. These show that the error of the GFR estimates is such that it is not possible to distinguish between the equations over much of the concentration range of either analyte. The general forms of the equations are also used to derive an expression for the concentration of cystatin C as a function of the concentration of creatinine. This equation shows that these analyte concentrations are not linearly related. Clinical reports of cystatin C and creatinine concentration are consistent with the expression derived.

Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen

In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).

Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach

The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.

Measurement of Lead Pollution in the Air of Babylon Governorate/Iraq during Year 2010

This research aims to study the lead pollution in the air of Babylon governorate that resulted generally from vehicles exhausts in addition to industrial and human activities.Vehicles number in Babylon governorate increased significantly after year 2003 that resulted with increase in lead emissions into the air.Measurement of lead emissions was done in seven stations distributed randomly in Babylon governorate. These stations where located in Industrial (Al-Sena'ay) Quarter, 60 street (near to Babylon sewer directorate), 40 Street (near to the first intersection), Al-Hashmia city, Al-Mahaweel city, , Al- Musayab city in addition to another station in Sayd Idris village belong to Abugharaq district (Agricultural station for comparison). The measured concentrations in these stations were compared with the standard limits of Environmental Protection Agency EPA (2 μg /m3). The results of this study showed that the average of lead concentrations ,in Babylon governorate during year 2010, was (3.13 μg/m3) which was greater than standard limits (2 μg/m3). The maximum concentration of lead was (6.41 μg / m3) recorded in the Industrial (Al-Sena'ay) Quarter during April month, while the minimum concentrations was (0.36 μg / m3) recorded in the agricultural station (Abugharaq) during December month.

Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques

The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.

Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks

A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.

Boundary Segmentation of Microcalcification using Parametric Active Contours

A mammography image is composed of low contrast area where the breast tissues and the breast abnormalities such as microcalcification can hardly be differentiated by the medical practitioner. This paper presents the application of active contour models (Snakes) for the segmentation of microcalcification in mammography images. Comparison on the microcalcifiation areas segmented by the Balloon Snake, Gradient Vector Flow (GVF) Snake, and Distance Snake is done against the true value of the microcalcification area. The true area value is the average microcalcification area in the original mammography image traced by the expert radiologists. From fifty images tested, the result obtained shows that the accuracy of the Balloon Snake, GVF Snake, and Distance Snake in segmenting boundaries of microcalcification are 96.01%, 95.74%, and 95.70% accuracy respectively. This implies that the Balloon Snake is a better segmentation method to locate the exact boundary of a microcalcification region.

Carbon Disulfide Production via Hydrogen Sulfide Methane Reformation

Carbon disulfide is widely used for the production of viscose rayon, rubber, and other organic materials and it is a feedstock for the synthesis of sulfuric acid. The objective of this paper is to analyze possibilities for efficient production of CS2 from sour natural gas reformation (H2SMR) (2H2S+CH4 =CS2 +4H2) . Also, the effect of H2S to CH4 feed ratio and reaction temperature on carbon disulfide production is investigated numerically in a reforming reactor. The chemical reaction model is based on an assumed Probability Density Function (PDF) parameterized by the mean and variance of mixture fraction and β-PDF shape. The results show that the major factors influencing CS2 production are reactor temperature. The yield of carbon disulfide increases with increasing H2S to CH4 feed gas ratio (H2S/CH4≤4). Also the yield of C(s) increases with increasing temperature until the temperature reaches to 1000°K, and then due to increase of CS2 production and consumption of C(s), yield of C(s) drops with further increase in the temperature. The predicted CH4 and H2S conversion and yield of carbon disulfide are in good agreement with result of Huang and TRaissi.

Low Energy Method for Data Delivery in Ubiquitous Network

Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.

The Association of Matrix Metalloproteinase-3 Gene -1612 5A/6A Polymorphism with Susceptibility to Coronary Artery Stenosis in an Iranian Population

Matrix metalloproteinase-3 (MMP3) is key member of the MMP family, and is known to be present in coronary atherosclerotic. Several studies have demonstrated that MMP-3 5A/6A polymorphism modify each transcriptional activity in allele specific manner. We hypothesized that this polymorphism may play a role as risk factor for development of coronary stenosis. The aim of our study was to estimate MMP-3 (5A/6A) gene polymorphism on interindividual variability in risk for coronary stenosis in an Iranian population.DNA was extracted from white blood cells and genotypes were obtained from coronary stenosis cases (n=95) and controls (n=100) by PCR (polymerase chain reaction) and restriction fragment length polymorphism techniques. Significant differences between cases and controls were observed for MMP3 genotype frequencies (X2=199.305, p< 0.001); the 6A allele was less frequently seen in the control group, compared to the disease group (85.79 vs. 78%, 6A/6A+5A/6A vs. 5A/5A, P≤0.001). These data imply the involvement of -1612 5A/6A polymorphism in coronary stenosis, and suggest that probably the 6A/6A MMP-3 genotype is a genetic susceptibility factor for coronary stenosis.

The Effect of Geometry Dimensions on the Earthquake Response of the Finite Element Method

In this paper, the effect of width and height of the model on the earthquake response in the finite element method is discussed. For this purpose an earth dam as a soil structure under earthquake has been considered. Various dam-foundation models are analyzed by Plaxis, a finite element package for solving geotechnical problems. The results indicate considerable differences in the seismic responses.

Numerical Investigation of Flow Patterns and Thermal Comfort in Air-Conditioned Lecture Rooms

The present paper was concerned primarily with the analysis, simulation of the air flow and thermal patterns in a lecture room. The paper is devoted to numerically investigate the influence of location and number of ventilation and air conditioning supply and extracts openings on air flow properties in a lecture room. The work focuses on air flow patterns, thermal behaviour in lecture room where large number of students. The effectiveness of an air flow system is commonly assessed by the successful removal of sensible and latent loads from occupants with additional of attaining air pollutant at a prescribed level to attain the human thermal comfort conditions and to improve the indoor air quality; this is the main target during the present paper. The study is carried out using computational fluid dynamics (CFD) simulation techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD modelling techniques solved the continuity, momentum and energy conservation equations in addition to standard k – ε model equations for turbulence closure. Throughout the investigations, numerical validation is carried out by way of comparisons of numerical and experimental results. Good agreement is found among both predictions.

A Programmable FSK-Modulator in 350nm CMOS Technology

This paper describes the design of a programmable FSK-modulator based on VCO and its implementation in 0.35m CMOS process. The circuit is used to transmit digital data at 100Kbps rate in the frequency range of 400-600MHz. The design and operation of the modulator is discussed briefly. Further the characteristics of PLL, frequency synthesizer, VCO and the whole design are elaborated. The variation among the proposed and tested specifications is presented. Finally, the layout of sub-modules, pin configurations, final chip and test results are presented.

Mirror Neuron System Study on Elderly Using Dynamic Causal Modeling fMRI Analysis

Dynamic Causal Modeling (DCM) functional Magnetic Resonance Imaging (fMRI) is a promising technique to study the connectivity among brain regions and effects of stimuli through modeling neuronal interactions from time-series neuroimaging. The aim of this study is to study characteristics of a mirror neuron system (MNS) in elderly group (age: 60-70 years old). Twenty volunteers were MRI scanned with visual stimuli to study a functional brain network. DCM was employed to determine the mechanism of mirror neuron effects. The results revealed major activated areas including precentral gyrus, inferior parietal lobule, inferior occipital gyrus, and supplementary motor area. When visual stimuli were presented, the feed-forward connectivity from visual area to conjunction area was increased and forwarded to motor area. Moreover, the connectivity from the conjunction areas to premotor area was also increased. Such findings can be useful for future diagnostic process for elderly with diseases such as Parkinson-s and Alzheimer-s.

A Robust LS-SVM Regression

In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.