Objective Performance of Compressed Image Quality Assessments

Measurement of the quality of image compression is important for image processing application. In this paper, we propose an objective image quality assessment to measure the quality of gray scale compressed image, which is correlation well with subjective quality measurement (MOS) and least time taken. The new objective image quality measurement is developed from a few fundamental of objective measurements to evaluate the compressed image quality based on JPEG and JPEG2000. The reliability between each fundamental objective measurement and subjective measurement (MOS) is found. From the experimental results, we found that the Maximum Difference measurement (MD) and a new proposed measurement, Structural Content Laplacian Mean Square Error (SCLMSE), are the suitable measurements that can be used to evaluate the quality of JPEG200 and JPEG compressed image, respectively. In addition, MD and SCLMSE measurements are scaled to make them equivalent to MOS, given the rate of compressed image quality from 1 to 5 (unacceptable to excellent quality).

On the Symbol Based Decision Feedback Equalizer

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Information Security in E-Learning through Identification of Humans

During recent years, the traditional learning approaches have undergone fundamental changes due to the emergence of new technologies such as multimedia, hypermedia and telecommunication. E-learning is a modern world phenomenon that has come into existence in the information age and in a knowledgebased society. E-learning has developed significantly within a short period of time. Thus it is of a great significant to secure information, allow a confident access and prevent unauthorized accesses. Making use of individuals- physiologic or behavioral (biometric) properties is a confident method to make the information secure. Among the biometrics, fingerprint is more acceptable and most countries use it as an efficient methods of identification. This article provides a new method to compare the fingerprint comparison by pattern recognition and image processing techniques. To verify fingerprint, the shortest distance method is used together with perceptronic multilayer neural network functioning based on minutiae. This method is highly accurate in the extraction of minutiae and it accelerates comparisons due to elimination of false minutiae and is more reliable compared with methods that merely use directional images.

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions

Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact, is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts.Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section thickness, and material under loading with different speeds. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in speed of loading, energy absorption would be more.

Results of Percutaneous Nephrolithotomy under Spinal Anesthesia

Recently, there has been a considerable increase in the number of procedures carried out under regional anesthesia. However, percutaneous nephrolithotomy (PCNL) procedures are usually performed under general anesthesia. The aim of this study was to assess the safety and efficacy of PCNL under spinal anesthesia in patients with renal calculi. We describe our 9 years experience of performing PCNL under spinal anesthesia for 387 patients with large stones of the upper urinary tract, with regard to the effectiveness and side effects. All patients received spinal anesthetics (Lidocain 5%, or Bupivacaine 0.75%) and underwent PCNL in prone position. The success rate was 94.1%. The incidence of complications was 11.6%. PCNL under spinal anesthesia is feasible, safe, and well-tolerated in management of patients with renal stones.

Pervasiveness of Aflatoxin in Peanuts Growing in the Area of Pothohar, Pakistan

Mycotoxin (aflatoxins) contamination of peanuts is a great concern for human health. A total of 72 samples of unripe, roasted, and salty peanuts were collected randomly from Pothohar plateau of Pakistan for the assessment of aflatoxin. Samples were dried, ground and extracted by acetonitrile (84%). The filtered extracts were cleaned up by MycoSep-226 and analyzed by high performance liquid chromatography with flourescence detector. Quantification limit of Aflatoxin was 1 μg/kg and 70% Recovery was observed in spiked samples in the range 1–10 μg/kg. The screening of mycotoxins indicated that aflatoxins were present in most of the samples being detected in 82%, in concentrations from 14.25 μg/kg to 98.80 μg/kg. Optimal conditions for mycotoxin production and fungal growth are frequently found in the crop fields as well as in store houses. Human exposure of such toxin can be controlled by pointed out such awareness and implemented the regulations.

Overload Control in a SIP Signaling Network

The Internet telephony employs a new type of Internet communication on which a mutual communication is realized by establishing sessions. Session Initiation Protocol (SIP) is used to establish sessions between end-users. For unreliable transmission (UDP), SIP message should be retransmitted when it is lost. The retransmissions increase a load of the SIP signaling network, and sometimes lead to performance degradation when a network is overloaded. The paper proposes an overload control for a SIP signaling network to protect from a performance degradation. Introducing two thresholds in a queue of a SIP proxy server, the SIP proxy server detects a congestion. Once congestion is detected, a SIP signaling network restricts to make new calls. The proposed overload control is evaluated using the network simulator (ns-2). With simulation results, the paper shows the proposed overload control works well.

Examination of Pre-Tender Budgeting Techniques for Mechanical and Electrical Services in Malaysia

The procurement and cost management approach adopted for mechanical and electrical (M&E) services in Malaysian construction industry have been criticized for its inefficiency. The study examined early cost estimating practices adopted for mechanical and electrical services (M&E) in Malaysia so as to understand the level of compliance of the current techniques with best practices. The methodology adopted for the study is a review of bidding documents used on both completed and on – going building projects awarded between 2008 – 2010 under 9th Malaysian Plan. The analysis revealed that, M&E services cost cannot be reliably estimated at pre-contract stage; the bidding techniques adopted for M&E services failed to provide uniform basis for contractors to submit tender; detailed measurement of items were not made which could complicate post contract cost control and financial management. The paper concluded that, there is need to follow a structured approach in determining the pre-contract cost estimate for M&E services which will serve as a virile tool for post contract cost control.

Route Training in Mobile Robotics through System Identification

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Analysis and Measuring Surface Roughness of Nonwovens Using Machine Vision Method

Concerning the measurement of friction properties of textiles and fabrics using Kawabata Evaluation System (KES), whose output is constrained to the surface friction factor of fabric, and no other data would be generated; this research has been conducted to gain information about surface roughness regarding its surface friction factor. To assess roughness properties of light nonwovens, a 3-dimensional model of a surface has been simulated with regular sinuous waves through it as an ideal surface. A new factor was defined, namely Surface Roughness Factor, through comparing roughness properties of simulated surface and real specimens. The relation between the proposed factor and friction factor of specimens has been analyzed by regression, and results showed a meaningful correlation between them. It can be inferred that the new presented factor can be used as an acceptable criterion for evaluating the roughness properties of light nonwoven fabrics.

MIMO-OFDM Coded for Digital Terrestrial Television Broadcasting Systems

This paper proposes and analyses the wireless telecommunication system with multiple antennas to the emission and reception MIMO (multiple input multiple output) with space diversity in a OFDM context. In particular it analyses the performance of a DTT (Digital Terrestrial Television) broadcasting system that includes MIMO-OFDM techniques. Different propagation channel models and configurations are considered for each diversity scheme. This study has been carried out in the context of development of the next generation DVB-T/H and WRAN.

A Support System Applicable to Multiple APIs for Haptic VR Application Designers

This paper describes a proposed support system which enables applications designers to effectively create VR applications using multiple haptic APIs. When the VR designers create applications, it is often difficult to handle and understand many parameters and functions that have to be set in the application program using documentation manuals only. This complication may disrupt creative imagination and result in inefficient coding. So, we proposed the support application which improved the efficiency of VR applications development and provided the interactive components of confirmation of operations with haptic sense previously. In this paper, we describe improvements of our former proposed support application, which was applicable to multiple APIs and haptic devices, and evaluate the new application by having participants complete VR program. Results from a preliminary experiment suggest that our application facilitates creation of VR applications.

Image Compression Using Hybrid Vector Quantization

In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.

A new Adaptive Approach for Histogram based Mouth Segmentation

The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.

Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation

The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.

Palynomorphological Data of Pollen Grains of Lamium garganicum

This study shows palynomorphological description of pollen grains of Lamium garganicum, species of the family Labiatae. Fresh material of this plant is taken in Mount Llogara, in Albania. By comparison made between palinomorphological characteristics of pollen grains of Lamium garganicum with those of Lamium maculatum and Lamium purpureum, showed that granules have similarities in the number of furrows. The pollen grains of Lamium garganicum were larger in length and width than those of Lamium maculatum and almost equal with those of Lamium purpureum. Furrows are longer than those of pollen grains in Lamium maculatum and shorter than those of Lamium purpureum. The layer of exine of Lamium garganicum was thinner than that of two others. The sculpture of exine was fine reticulate, where reticulas were uniform whereas in Lamium purpureum was verrucate, with small verrucae; in Lamium maculatum was reticulate.

Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging

In this work, the primary compressive strength components of human femur trabecular bone are qualitatively assessed using image processing and wavelet analysis. The Primary Compressive (PC) component in planar radiographic femur trabecular images (N=50) is delineated by semi-automatic image processing procedure. Auto threshold binarization algorithm is employed to recognize the presence of mineralization in the digitized images. The qualitative parameters such as apparent mineralization and total area associated with the PC region are derived for normal and abnormal images.The two-dimensional discrete wavelet transforms are utilized to obtain appropriate features that quantify texture changes in medical images .The normal and abnormal samples of the human femur are comprehensively analyzed using Harr wavelet.The six statistical parameters such as mean, median, mode, standard deviation, mean absolute deviation and median absolute deviation are derived at level 4 decomposition for both approximation and horizontal wavelet coefficients. The correlation coefficient of various wavelet derived parameters with normal and abnormal for both approximated and horizontal coefficients are estimated. It is seen that in almost all cases the abnormal show higher degree of correlation than normals. Further the parameters derived from approximation coefficient show more correlation than those derived from the horizontal coefficients. The parameters mean and median computed at the output of level 4 Harr wavelet channel was found to be a useful predictor to delineate the normal and the abnormal groups.

Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms

The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.

Effect of Teaching Games for Understanding Approach on Students- Cognitive Learning Outcome

The study investigated the effects of Teaching Games for Understanding approach on students ‘cognitive learning outcome. The study was a quasi-experimental non-equivalent pretest-posttest control group design whereby 10 year old primary school students (n=72) were randomly assigned to an experimental and a control group. The experimental group students were exposed with TGfU approach and the control group with the Traditional Skill approach of handball game. Game Performance Assessment Instrument (GPAI) was used to measure students' tactical understanding and decision making in 3 versus 3 handball game situations. Analysis of covariance (ANCOVA) was used to analyze the data. The results reveal that there was a significant difference between the TGfU approach group and the traditional skill approach group students on post test score (F (1, 69) = 248.83, p < .05). The findings of this study suggested the importance of TGfU approach to improve primary students’ tactical understanding and decision making in handball game.