Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Review and Experiments on SDMSCue

In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.

Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum

Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.

Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye

Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.

Optimization of Gentamicin Production: Comparison of ANN and RSM Techniques

In this work, statistical experimental design was applied for the optimization of medium constituents for Gentamicin production by Micromsonospora echinospora subs pallida (MTCC 708) in a batch reactor and the results are compared with the ANN predicted values. By central composite design, 50 experiments are carried out for five test variables: Starch, Soya bean meal, K2HPO4, CaCO3 and FeSO4. The optimum condition was found to be: Starch (8.9,g/L), Soya bean meal (3.3 g/L), K2HPO4 (0.8 g/L), CaCO3 (4 g/L) and FeSO4 (0.03 g/L). At these optimized conditions, the yield of gentamicin was found to be 1020 mg/L. The R2 values were found to be 1 for ANN training set, 0.9953 for ANN test set, and 0.9286 for RSM.

Experiments on Element and Document Statistics for XML Retrieval

This paper presents an information retrieval model on XML documents based on tree matching. Queries and documents are represented by extended trees. An extended tree is built starting from the original tree, with additional weighted virtual links between each node and its indirect descendants allowing to directly reach each descendant. Therefore only one level separates between each node and its indirect descendants. This allows to compare the user query and the document with flexibility and with respect to the structural constraints of the query. The content of each node is very important to decide weither a document element is relevant or not, thus the content should be taken into account in the retrieval process. We separate between the structure-based and the content-based retrieval processes. The content-based score of each node is commonly based on the well-known Tf × Idf criteria. In this paper, we compare between this criteria and another one we call Tf × Ief. The comparison is based on some experiments into a dataset provided by INEX1 to show the effectiveness of our approach on one hand and those of both weighting functions on the other.

Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment

The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.

Piezomechanical Systems for Algae Cell Ultrasonication

Nowadays for algae cell ultrasonication the longitudinal ultrasonic piezosystems are used. In this paper a possibility of creating unique ultrasonic piezoelectric system, which would allow reducing energy losses and concentrating this energy to a small closed volume are proposed. The current vibrating systems whose ultrasonic energy is concentrated inside of hollow cylinder in which water-algae mixture is flowing. Two, three or multiply ultrasonic composite systems to concentrate total energy into a hollow cylinder to creating strong algae cell ultrasonication are used. The experiments and numerical FEM analysis results using diskshaped transducer and the first biological test results on algae cell disruption by ultrasonication are presented as well.

Content and Resources based Mobile and Wireless Video Transcoding

Delivering streaming video over wireless is an important component of many interactive multimedia applications running on personal wireless handset devices. Such personal devices have to be inexpensive, compact, and lightweight. But wireless channels have a high channel bit error rate and limited bandwidth. Delay variation of packets due to network congestion and the high bit error rate greatly degrades the quality of video at the handheld device. Therefore, mobile access to multimedia contents requires video transcoding functionality at the edge of the mobile network for interworking with heterogeneous networks and services. Therefore, to guarantee quality of service (QoS) delivered to the mobile user, a robust and efficient transcoding scheme should be deployed in mobile multimedia transporting network. Hence, this paper examines the challenges and limitations that the video transcoding schemes in mobile multimedia transporting network face. Then handheld resources, network conditions and content based mobile and wireless video transcoding is proposed to provide high QoS applications. Exceptional performance is demonstrated in the experiment results. These experiments were designed to verify and prove the robustness of the proposed approach. Extensive experiments have been conducted, and the results of various video clips with different bit rate and frame rate have been provided.

Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.

Terminal Velocity of a Bubble Rise in a Liquid Column

As it is known, buoyancy and drag forces rule bubble's rise velocity in a liquid column. These forces are strongly dependent on fluid properties, gravity as well as equivalent's diameter. This study reports a set of bubble rising velocity experiments in a liquid column using water or glycerol. Several records of terminal velocity were obtained. The results show that bubble's rise terminal velocity is strongly dependent on dynamic viscosity effect. The data set allowed to have some terminal velocities data interval of 8.0 ? 32.9 cm/s with Reynolds number interval 1.3 -7490. The bubble's movement was recorded with a video camera. The main goal is to present an original set data and results that will be discussed based on two-phase flow's theory. It will also discussed, the prediction of terminal velocity of a single bubble in liquid, as well as the range of its applicability. In conclusion, this study presents general expressions for the determination of the terminal velocity of isolated gas bubbles of a Reynolds number range, when the fluid proprieties are known.

Treatment of Acid Mine Drainage Using Un- Activated Bentonite and Limestone

The use of un-activated bentonite, and un-activated bentonite blended with limestone for the treatment of acid mine drainage (AMD) was investigated. Batch experiments were conducted in a 5 L PVC reactor. Un-activated bentonite on its own did not effectively neutralize and remove heavy metals from AMD. The final pH obtained was below 4 and the metal removal efficiency was below 50% for all the metals when bentonite solid loadings of 1, 5 and 10% were used. With un-activated bentonite (1%) blended with 1% limestone, the final pH obtained was approximately 7 and metal removal efficiencies were greater than 60% for most of the metals. The Langmuir isotherm gave the best fit for the experimental data giving correlation coefficient (R2) very close to 1. Thus, it was concluded that un-activated bentonite blended with limestone is suitable for potential applications in removing heavy metals and neutralizing AMD.

Probabilistic Approach as a Method Used in the Solution of Engineering Design for Biomechanics and Mining

This paper focuses on the probabilistic numerical solution of the problems in biomechanics and mining. Applications of Simulation-Based Reliability Assessment (SBRA) Method are presented in the solution of designing of the external fixators applied in traumatology and orthopaedics (these fixators can be applied for the treatment of open and unstable fractures etc.) and in the solution of a hard rock (ore) disintegration process (i.e. the bit moves into the ore and subsequently disintegrates it, the results are compared with experiments, new design of excavation tool is proposed.

A Study on Energy-efficient Temperature Control

The top-heavy demographic of low birth-rate and longer lifespan is a growing social problem, and one of its expected effects will be a shortage of young workers and a growing reliance on a workforce of middle-aged and older people. However, the environment of today's industrial workplace is not particularly suited to middle-aged and older workers, one notable problem being temperature control. Higher temperatures can cause health problems such as heat stroke, and the number of cases increases sharply in people over 65. Moreover, in conditions above 33°C, older people can develop circulatory system disorders, and also have a higher chance of suffering a fatal heart attack. We therefore propose a new method for controlling temperature in the indoor workplace. In this study two different verification experiments were conducted, with the proposed temperature control method being tested in cargo containers and conventional houses. The method's effectiveness was apparent in measurements of temperature and electricity consumption

Evaluating the Response of Rainfed-Chickpea to Population Density in Iran, Using Simulation

The response of growth and yield of rainfed-chickpea to population density should be evaluated based on long-term experiments to include the climate variability. This is achievable just by simulation. In this simulation study, this evaluation was done by running the CYRUS model for long-term daily weather data of five locations in Iran. The tested population densities were 7 to 59 (with interval of 2) stands per square meter. Various functions, including quadratic, segmented, beta, broken linear, and dent-like functions, were tested. Considering root mean square of deviations and linear regression statistics [intercept (a), slope (b), and correlation coefficient (r)] for predicted versus observed variables, the quadratic and broken linear functions appeared to be appropriate for describing the changes in biomass and grain yield, and in harvest index, respectively. Results indicated that in all locations, grain yield tends to show increasing trend with crowding the population, but subsequently decreases. This was also true for biomass in five locations. The harvest index appeared to have plateau state across low population densities, but decreasing trend with more increasing density. The turning point (optimum population density) for grain yield was 30.68 stands per square meter in Isfahan, 30.54 in Shiraz, 31.47 in Kermanshah, 34.85 in Tabriz, and 32.00 in Mashhad. The optimum population density for biomass ranged from 24.6 (in Tabriz) to 35.3 stands per square meter (Mashhad). For harvest index it varied between 35.87 and 40.12 stands per square meter.

Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram. To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Evaluation of Cigarette Filters Rods as a Biofilm Carrier in Integrated Fixed Film Activated Sludge Process

The purpose of the experiments described in this article was the comparison of integrated fixed film activated sludge (IFAS) and activated sludge (AS) system. The IFAS applied system consists of the cigarette filter rods (wasted filter in tobacco factories) as a biofilm carrier. The comparison with activated sludge was performed by two parallel treatment lines. Organic substance, ammonia and TP removal was investigated over four month period. Synthetic wastewater was prepared with ordinary tap water and glucose as the main sources of carbon and energy, plus balanced macro and micro nutrients. COD removal percentages of 94.55%, and 81.62% were achieved for IFAS and activated sludge system, respectively. Also, ammonia concentration significantly decreased by increasing the HRT in both systems. The average ammonia removal of 97.40 % and 96.34% were achieved for IFAS and activated sludge system, respectively. The removal efficiency of total phosphorus (TP-P) was 60.64%, higher than AS process by 56.63% respectively.

An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data

Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.

Hand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach

Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. The extracted feature vector is fed to multiple classifier fusion. A set of experiments were conducted to compare decision templates (DTs) with some combination rules. Results from decision templates conclude 97.99% and 97.28% for Farsi and English handwritten digits.