A Comparative Study of Medical Image Segmentation Methods for Tumor Detection

Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.

Experiments on Element and Document Statistics for XML Retrieval

This paper presents an information retrieval model on XML documents based on tree matching. Queries and documents are represented by extended trees. An extended tree is built starting from the original tree, with additional weighted virtual links between each node and its indirect descendants allowing to directly reach each descendant. Therefore only one level separates between each node and its indirect descendants. This allows to compare the user query and the document with flexibility and with respect to the structural constraints of the query. The content of each node is very important to decide weither a document element is relevant or not, thus the content should be taken into account in the retrieval process. We separate between the structure-based and the content-based retrieval processes. The content-based score of each node is commonly based on the well-known Tf × Idf criteria. In this paper, we compare between this criteria and another one we call Tf × Ief. The comparison is based on some experiments into a dataset provided by INEX1 to show the effectiveness of our approach on one hand and those of both weighting functions on the other.

A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning

Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.