Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys

A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.

Impacts of Rail Transportation Projects on Urban Areas in Izmir-Turkey

With the development of technology, the growing trend of fast and safe passenger transport, air pollution, traffic congestion, increase in problems such as the increasing population and the high cost of private vehicle usage made many cities around the world with a population of more or less, start to build rail systems as a means of urban transport in order to ensure the economic and environmental sustainability and more efficient use of land in the city. The implementation phase of rail systems costs much more than other public transport systems. However, social and economic returns in the long term made these systems the most popular investment tool for planned and developing cities. In our country, the purpose, goals and policies of transportation plans are away from integrity, and the problems are not clearly detected. Also, not defined and incomplete assessment of transportation systems and insufficient financial analysis are the most important cause of failure. Rail systems and other transportation systems to be addressed as a whole is seen as the main factor in increasing efficiency in applications that are not integrated yet in our country to come to this point has led to the problem.

Experimental Investigation on Solid Concentration in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Methanol-to-olefins coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Effect of Plasma Therapy on Epidermal Regeneration

The purpose of our study was to compare spontaneous re-epithelisation characteristics versus assisted re-epithelisation. In order to assess re-epithelisation of the injured skin, we have imagined and designed a burn wound model on Wistar rat skin. Our aim was to create standardised, easy reproducible and quantifiable skin lesions involving entire epidermis and superficial dermis. We then have applied the above mentioned therapeutic strategies to compare regeneration of epidermis and dermis, local and systemic parameter changes in different conditions. We have enhanced the reepithelisation process under a moist atmosphere of a polyurethane wound dress modified with helium non-thermal plasma, and with the aid of direct cold-plasma treatment respectively. We have followed systemic parameters change: hematologic and biochemical parameters, and local features: oxidative stress markers and histology of skin in the above mentioned conditions. Re-epithelisation is just a part of the skin regeneration process, which recruits cellular components, with the aid of epidermal and dermal interaction via signal molecules.

Assessment of the Influence of External Earth Terrain at Construction of the Physicmathematical Models or Finding the Dynamics of Pollutants' Distribution in Urban Atmosphere

There is a complex situation on the transport environment in the cities of the world. For the analysis and prevention of environmental problems an accurate calculation hazardous substances concentrations at each point of the investigated area is required. In the turbulent atmosphere of the city the wellknown methods of mathematical statistics for these tasks cannot be applied with a satisfactory level of accuracy. Therefore, to solve this class of problems apparatus of mathematical physics is more appropriate. In such models, because of the difficulty as a rule the influence of uneven land surface on streams of air masses in the turbulent atmosphere of the city are not taken into account. In this paper the influence of the surface roughness, which can be quite large, is mathematically shown. The analysis of this problem under certain conditions identified the possibility of areas appearing in the atmosphere with pressure tending to infinity, i.e. so-called "wall effect".

A Computational Stochastic Modeling Formalism for Biological Networks

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

A New Nonlinear PID Controller and its Parameter Design

A new nonlinear PID controller and its stability analysis are presented in this paper. A nonlinear function is deduced from the similarities between the control effort and the electric-field effect of a capacitor. The conventional linear PID controller can be modified into a nonlinear one by this function. To analyze the stability of the nonlinear PID controlled system, an idea of energy equivalence is adapted to avoid the conservativeness which is usually arisen from some traditional theorems and Criterions. The energy equivalence is naturally related with the conceptions of Passivity and T-Passivity. As a result, an engineering guideline for the parameter design of the nonlinear PID controller is obtained. An inverted pendulum system is tested to verify the nonlinear PID control scheme.

A Comparative Study of Transient Flow through Cerebral Aneurysms using CFD

The recent advances in computational fluid dynamics (CFD) can be useful in observing the detailed hemodynamics in cerebral aneurysms for understanding not only their formation and rupture but also for clinical evaluation and treatment. However, important hemodynamic quantities are difficult to measure in vivo. In the present study, an approximate model of normal middle cerebral artery (MCA) along with two cases consisting broad and narrow saccular aneurysms are analyzed. The models are generated in ANSYS WORKBENCH and transient analysis is performed in ANSYS-CFX. The results obtained are compared for three cases and agree well with the available literature.

Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb. The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

An Efficient Framework to Build Up Malware Dataset

This research paper presents a framework on how to build up malware dataset.Many researchers took longer time to clean the dataset from any noise or to transform the dataset into a format that can be used straight away for testing. Therefore, this research is proposing a framework to help researchers to speed up the malware dataset cleaningprocesses which later can be used for testing. It is believed, an efficient malware dataset cleaning processes, can improved the quality of the data, thus help to improve the accuracy and the efficiency of the subsequent analysis. Apart from that, an in-depth understanding of the malware taxonomy is also important prior and during the dataset cleaning processes. A new Trojan classification has been proposed to complement this framework.This experiment has been conducted in a controlled lab environment and using the dataset from VxHeavens dataset. This framework is built based on the integration of static and dynamic analyses, incident response method and knowledge database discovery (KDD) processes.This framework can be used as the basis guideline for malware researchers in building malware dataset.

An Implementation of MacMahon's Partition Analysis in Ordering the Lower Bound of Processing Elements for the Algorithm of LU Decomposition

A lot of Scientific and Engineering problems require the solution of large systems of linear equations of the form bAx in an effective manner. LU-Decomposition offers good choices for solving this problem. Our approach is to find the lower bound of processing elements needed for this purpose. Here is used the so called Omega calculus, as a computational method for solving problems via their corresponding Diophantine relation. From the corresponding algorithm is formed a system of linear diophantine equalities using the domain of computation which is given by the set of lattice points inside the polyhedron. Then is run the Mathematica program DiophantineGF.m. This program calculates the generating function from which is possible to find the number of solutions to the system of Diophantine equalities, which in fact gives the lower bound for the number of processors needed for the corresponding algorithm. There is given a mathematical explanation of the problem as well. Keywordsgenerating function, lattice points in polyhedron, lower bound of processor elements, system of Diophantine equationsand : calculus.

Growth, Population, Exports and Wagner's Law: A Case Study of Pakistan (1972-2007)

The objective of this study is to examine the validity of Wagner-s law and relationship between economic growth, population and export for Pakistan. The ARDL Bounds cointegration and ECM are utilized for long and short run equilibrium for the period of 1972-2007. Population has considerable role in an economy and exports are the main source to raise the GDP. With the increase in GDP, the government expenditures may or may not increase. The empirical results indicate that the Wagner-s Law does hold, as economic growth is significantly and positively correlated with government expenditures. However, population and exports have also significant and positive impact on government expenditures both in short and long run. The significant and negative coefficient of error correction term in ECM indicates that after a shock, the long rum equilibrium will again converge towards equilibrium about 70.82 percent within a year.

Liveness Detection for Embedded Face Recognition System

To increase reliability of face recognition system, the system must be able to distinguish real face from a copy of face such as a photograph. In this paper, we propose a fast and memory efficient method of live face detection for embedded face recognition system, based on the analysis of the movement of the eyes. We detect eyes in sequential input images and calculate variation of each eye region to determine whether the input face is a real face or not. Experimental results show that the proposed approach is competitive and promising for live face detection.

Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm

This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.

Application of Sensory Thermography as Measuring Method to Study Median Nerve Temperatures

This paper presents an experimental case using sensory thermography to describe temperatures behavior on median nerve once an activity of repetitive motion was done. Thermography is a noninvasive technique without biological hazard and not harm at all times and has been applied in many experiments to seek for temperature patterns that help to understand diseases like cancer and cumulative trauma disorders (CTD’s). An infrared sensory thermography technology was developed to execute this study. Three women in good shape were selected for the repetitive motion tests for 4 days, two right-handed women and 1 left handed woman, two sensory thermographers were put on both median nerve wrists to get measures. The evaluation time was of 3 hours 30 minutes in a controlled temperature, 20 minutes of stabilization time at the beginning and end of the operation. Temperatures distributions are statistically evaluated and showed similar temperature patterns behavior.

Load Modeling for Power Flow and Transient Stability Computer Studies at BAKHTAR Network

A method has been developed for preparing load models for power flow and stability. The load modeling (LOADMOD) computer software transforms data on load class mix, composition, and characteristics into the from required for commonly–used power flow and transient stability simulation programs. Typical default data have been developed for load composition and characteristics. This paper defines LOADMOD software and describes the dynamic and static load modeling techniques used in this software and results of initial testing for BAKHTAR power system.

Characterization of the O.ul-mS952 Intron:A Potential Molecular Marker to Distinguish Between Ophiostoma Ulmi and Ophiostoma Novo-Ulmi Subsp. Americana

The full length mitochondrial small subunit ribosomal (mt-rns) gene has been characterized for Ophiostoma novo-ulmi subspecies americana. The gene was also characterized for Ophiostoma ulmi and a group II intron was noted in the mt-rns gene of O. ulmi. The insertion in the mt-rns gene is at position S952 and it is a group IIB1 intron that encodes a double motif LAGLIDADG homing endonuclease from an open reading frame located within a loop of domain III. Secondary structure models for the mt-rns RNA of O. novo-ulmi subsp. americana and O. ulmi were generated to place the intron within the context of the ribosomal RNA. The in vivo splicing of the O.ul-mS952 group II intron was confirmed with reverse transcription-PCR. A survey of 182 strains of Dutch Elm Diseases causing agents showed that the mS952 intron was absent in what is considered to be the more aggressive species O. novo-ulmi but present in strains of the less aggressive O. ulmi. This observation suggests that the O.ul-mS952 intron can be used as a PCR-based molecular marker to discriminate between O. ulmi and O. novo-ulmi subsp. americana.

Investigation of Various PWM Techniques for Shunt Active Filter

Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.

Dynamics In Production Processes

An increasingly dynamic and complex environment poses huge challenges to production enterprises, especially with regards to logistics. The Logistic Operating Curve Theory, developed at the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover, is a recognized approach to describing logistic interactions, nevertheless, it reaches its limits when it comes to the dynamic aspects. In order to facilitate a timely and optimal Logistic Positioning a method is developed for quickly and reliably identifying dynamic processing states.