Hydrolysis Characteristics of Polycrystalline Lithium Hydride Powders and Sintered Bulk

Ambient hydrolysis products in moist air and hydrolysis kinetics in argon with humidity of RH1.5% for polycrystalline LiH powders and sintered bulks were investigated by X-ray diffraction, Raman spectroscopy and gravimetry. The results showed that the hydrolysis products made up a layered structure of LiOH•H2O/LiOH/Li2O from surface of the sample to inside. In low humid argon atmosphere, the primary hydrolysis product was Li2O rather than LiOH. The hydrolysis kinetic curves of LiH bulks present a paralinear shape, which could be explained by the “Layer Diffusion Control" model. While a three-stage hydrolysis kinetic profile was observed for LiH powders under the same experimental conditions. The first two sections were similar to that of the bulk samples, and the third section also presents a linear reaction kinetics but with a smaller reaction rate compared to the second section because of a larger exothermic effect for the hydrolysis reaction of LiH powder.

Image Processing Using Color and Object Information for Wireless Capsule Endoscopy

Wireless capsule endoscopy provides real-time images in the digestive tract. Capsule images are usually low resolution and are diverse images due to travel through various regions of human body. Color information has been a primary reference in predicting abnormalities such as bleeding. Often color is not sufficient for this purpose. In this study, we took morphological shapes into account as additional, but important criterion. First, we processed gastric images in order to indentify various objects in the image. Then, we analyzed color information in the object. In this way, we could remove unnecessary information and increase the accuracy. Compared to our previous investigations, we could handle images of various degrees of brightness and improve our diagnostic algorithm.

Network of Coupled Stochastic Oscillators and One-way Quantum Computations

A network of coupled stochastic oscillators is proposed for modeling of a cluster of entangled qubits that is exploited as a computation resource in one-way quantum computation schemes. A qubit model has been designed as a stochastic oscillator formed by a pair of coupled limit cycle oscillators with chaotically modulated limit cycle radii and frequencies. The qubit simulates the behavior of electric field of polarized light beam and adequately imitates the states of two-level quantum system. A cluster of entangled qubits can be associated with a beam of polarized light, light polarization degree being directly related to cluster entanglement degree. Oscillatory network, imitating qubit cluster, is designed, and system of equations for network dynamics has been written. The constructions of one-qubit gates are suggested. Changing of cluster entanglement degree caused by measurements can be exactly calculated.

Identifications and Monitoring of Power System Dynamics Based on the PMUs and Wavelet Technique

Low frequency power oscillations may be triggered by many events in the system. Most oscillations are damped by the system, but undamped oscillations can lead to system collapse. Oscillations develop as a result of rotor acceleration/deceleration following a change in active power transfer from a generator. Like the operations limits, the monitoring of power system oscillating modes is a relevant aspect of power system operation and control. Unprevented low-frequency power swings can be cause of cascading outages that can rapidly extend effect on wide region. On this regard, a Wide Area Monitoring, Protection and Control Systems (WAMPCS) help in detecting such phenomena and assess power system dynamics security. The monitoring of power system electromechanical oscillations is very important in the frame of modern power system management and control. In first part, this paper compares the different technique for identification of power system oscillations. Second part analyzes possible identification some power system dynamics behaviors Using Wide Area Monitoring Systems (WAMS) based on Phasor Measurement Units (PMUs) and wavelet technique.

Facile Synthesis of Vertically Aligned ZnO Nanowires on Carbon Layer by Vapour Deposition

A facile vapour deposition method of synthesis of vertically aligned ZnO nanowires on carbon seed layer was developed. The received samples were investigated on electronic microscope JSM-6490 LA JEOL and x-ray diffractometer X, pert MPD PRO. The photoluminescence spectra (PL) of obtained ZnO samples at a room temperature were studied using He-Cd laser (325 nm line) as excitation source.

Stability of Electrical Drives Supplied by a Three Level Inverter

The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.

VFAST TCP: A delay-based enhanced version of FAST TCP

This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.

Pressure Induced Isenthalpic Oscillations with Condensation and Evaporation in Saturated Two-Phase Fluids

Saturated two-phase fluid flows are often subject to pressure induced oscillations. Due to compressibility the vapor bubbles act as a spring with an asymmetric non-linear characteristic. The volume of the vapor bubbles increases or decreases differently if the pressure fluctuations are compressing or expanding; consequently, compressing pressure fluctuations in a two-phase pipe flow cause less displacement in the direction of the pipe flow than expanding pressure fluctuations. The displacement depends on the ratio of liquid to vapor, the ratio of pressure fluctuations over average pressure and on the exciting frequency of the pressure fluctuations. In addition, pressure fluctuations in saturated vapor bubbles cause condensation and evaporation within the bubbles and change periodically the ratio between liquid to vapor, and influence the dynamical parameters for the oscillation. The oscillations are conforming to an isenthalpic process at constant enthalpy with no heat transfer and no exchange of work. The paper describes the governing non-linear equation for twophase fluid oscillations with condensation and evaporation, and presents steady state approximate solutions for free and for pressure induced oscillations. Resonance criteria and stability are discussed.

Skin Lesion Segmentation Using Color Channel Optimization and Clustering-based Histogram Thresholding

Automatic segmentation of skin lesions is the first step towards the automated analysis of malignant melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most effective color space for melanoma application. This paper proposes an automatic segmentation algorithm based on color space analysis and clustering-based histogram thresholding, a process which is able to determine the optimal color channel for detecting the borders in dermoscopy images. The algorithm is tested on a set of 30 high resolution dermoscopy images. A comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm, applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. By performing ROC analysis and ranking the metrics, it is demonstrated that the best results are obtained with the X and XoYoR color channels, resulting in an accuracy of approximately 97%. The proposed method is also compared with two state-of-theart skin lesion segmentation methods.

Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.

Certain Estimates of Oscillatory Integrals and Extrapolation

In this paper we study the boundedness properties of certain oscillatory integrals with polynomial phase. We obtain sharp estimates for these oscillatory integrals. By the virtue of these estimates and extrapolation we obtain Lp boundedness for these oscillatory integrals under rather weak size conditions on the kernel function.

Mycoflora of Activated Sludge with MBRs in Berlin, Germany

Thirty six samples from each (aerobic and anoxic) activated sludge were collected from two wastewater treatment plants with MBRs in Berlin, Germany. The samples were prepared for count and definition of fungal isolates; these isolates were purified by conventional techniques and identified by microscopic examination. Sixty tow species belonging to 28 genera were isolated from activated sludge samples under aerobic conditions (28 genera and 58 species) and anoxic conditions (26 genera and 52 species). The obtained data show that, Aspergillus was found at 94.4% followed by Penicillium 61.1 %, Fusarium (61.1 %), Trichoderma (44.4 %) and Geotrichum candidum (41.6 %) species were the most prevalent in all activated sludge samples. The study confirmed that fungi can thrive in activated sludge and sporulation, but isolated in different numbers depending on the effect of aeration system. Some fungal species in our study are saprophytic, and other a pathogenic to plants and animals.

Overall Effect of Nano Clay on the Physical Mechanical Properties of Epoxy Resin

In this paper, the effect of modified clay on the mechanical efficiency of epoxy resin is examined. Studies by X ray diffraction and microscopic transient electron method show that modified clay distribution in polymer area is intercalated kind. Examination the results of mechanical tests shows that existence of modified clay in epoxy area increases pressure yield strength, tension module and nano composite fracture toughness in relate of pure epoxy. By microscopic examinations it is recognized too that the action of toughness growth of this kind of nano composite is due to crack deflection, formation of new surfaces and fracture of clay piles.

Algorithm for Reconstructing 3D-Binary Matrix with Periodicity Constraints from Two Projections

We study the problem of reconstructing a three dimensional binary matrices whose interiors are only accessible through few projections. Such question is prominently motivated by the demand in material science for developing tool for reconstruction of crystalline structures from their images obtained by high-resolution transmission electron microscopy. Various approaches have been suggested to reconstruct 3D-object (crystalline structure) by reconstructing slice of the 3D-object. To handle the ill-posedness of the problem, a priori information such as convexity, connectivity and periodicity are used to limit the number of possible solutions. Formally, 3Dobject (crystalline structure) having a priory information is modeled by a class of 3D-binary matrices satisfying a priori information. We consider 3D-binary matrices with periodicity constraints, and we propose a polynomial time algorithm to reconstruct 3D-binary matrices with periodicity constraints from two orthogonal projections.

Linear Stability of Convection in a Viscoelastic Nanofluid Layer

This paper presents a linear stability analysis of natural convection in a horizontal layer of a viscoelastic nanofluid. The Oldroyd B model was utilized to describe the rheological behavior of a viscoelastic nanofluid. The model used for the nanofluid incorporated the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was derived analytically. The effects of the Deborah number, retardation parameters, concentration Rayleigh number, Prandtl number, and Lewis number on the stability of the system were investigated. Results indicated that there was competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity which caused oscillatory rather than stationary convection to occur. Oscillatory instability is possible with both bottom- and top-heavy nanoparticle distributions. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.

Numbers and Biomass of Bacteria and Fungi Obtained by the Direct Microscopic Count Method

The soil ecology of the organic and mineral soil layers of laurel-leaved and Cryptomeria japonica forest in the Kasuga-yama Hill Primeval Forest (Nara, Japan) was assessed. The number of bacteria obtained by the dilution plate count method was less than 0.05% of those counted by the direct microscopic count. We therefore found that forest soil contains large numbers of non-culturable bacteria compared with agricultural soils. The numbers of bacteria and fungi obtained by both the dilution plate count and the direct microscopic count were larger in the deeper horizons (F and H) of the organic layer than in the mineral soil layer. This suggests that active microbial metabolism takes place in the organic layer. The numbers of bacteria and the length of fungal hyphae obtained by the direct count method were greater in the H horizon than in the F horizon. The direct microscopic count revealed numerous non-culturable bacteria and fungi in the soil. The ratio of fungal to bacterial biomass was lower in the laurel-leaved forest soil. The fungal biomass was therefore relatively low in the laurel-leaved forest soil due to differences in forest vegetation.

Phase Behavior of CO2 and CH4 Hydrate in Porous Media

Hydrate phase equilibria for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal diameters 6, 30, and 100 nm were measured and compared with the calculated results based on van der Waals and Platteeuw model. At a specific temperature, three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data. The structural characteristics of gas hydrates in silica gel pores were investigated through NMR spectroscopy.

Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design

This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.

Backplane Serial Signaling and Protocol for Telecom Systems

In this paper, we implement a modern serial backplane platform for telecommunication inter-rack systems. For combination high reliability and low cost protocol property, we applied high level data link control (HDLC) protocol with low voltage differential signaling (LVDS) bus for card to card communicated over backplane. HDLC protocol is a high performance with several operation modes and is famous in telecommunication systems. LVDS bus is a high reliability with high immunity against electromagnetic interference (EMI) and noise.

The Effect of Binahong to Hematoma

In elevating performance in competetive sports, an athlete must continously train in achieving maximum performance,but needs to pay attention to recovery therapy, that is to recover from fatigue as well as injury.The correct recovery therapy will assist in process of recovery and helps in the training in achieving better performace. Binahong (Anredera cordifolia) was proven empirically by the locals in assisting speedy recovery from an injury.Clinical research with lab animals receiving blunt trauma injury, microscopically shown signs of: 1) redness, 2) heatiness, 3) swelling and, 4) lack of activity. There is also microscopic indication of: 1) infiltration of inflame cells (migration of cells to the trauma area), 2) Cells necrosis, 3) Congestion (as a result of dead red blood cells), 4) uedema. On administration of Binahong for 3 days, there is a significant drop of 5% in cell inflammation, 2% increase of fibroblast (cell membrance) count.Conclutin: Binahong do assist in reducing cell inflammation and increase counts of cells fibroblast. Suggestion: In helping athlete's to recover from force injury, we need study about Binahong's roots to inflammation cell and healing of injuried cell.