Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy

We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.





References:
[1] K. J. Cash, A. J. Heeger, K. W. Plaxco, and Y. Xiao, Optimization of
a reusable, DNA pseudoknot-based electrochemical sensor for sequencespecific
DNA detection in blood serum, Anal. Chem., 2009, 81, pp. 656-
661.
[2] S. S. Zhang, J. P. Xia, and X. M. Li, Electrochemical biosensor for detection
of adenosine based on structure-switching aptamer and amplification
with reporter probe DNA modified Au nanoparticles, Anal. Chem. , 2008,
80, pp. 8382-8388.
[3] G. A. Evtugyn, O. E. Goldfarb, H. C. Budnikov, A. N. Ivanov, and
V. G. Vinter, Amperometric DNA-peroxidase sensor for detection of
pharmaceutical preparations, Sensors, 2005, 5, pp. 364-376.
[4] K. Hashimoto, K. Ito, and Y. Ishimori, Sequence-specific gene detection
with a gold electrode modified with DNA probes and an electrochemically
active dye, Anal. Chem., 1994, 66, pp. 3830-3833.
[5] J. Y. Park, and S. M. Park, DNA hybridization sensors based on electrochemical
impedance spectroscopy as a detection tool, Sensors, 2009, 9,
pp. 9513-9532.
[6] C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus,
M. Schienle, and R. Thewes, A fully electronic label free DNA sensor
chip, IEEE Sens. J., 2007, 7, pp. 577-9532.
[7] Y. Yusof, K. Sugimoto, H. Ozawa, S. Uno, and K. Nakazato, On-chip
microelectrode capacitance measurement for biosensing applications,
Jpn. J. Appl. Phys., 2010, 49, 01AG05.
[8] J. Kafka, O. Panke, B. Abendroth, and F. Lisdat, A label-free DNA
sensor based on impedance spectroscopy, Electrochimica Acta, 2008, 53,
pp. 7467-7474.
[9] R. P. Janek, W. R. Fawcett, and A. Ulman, Impedance spectroscopy of
self-assembled monolayers on Au(111): Evidence for complex doublelayer
structure in aqeous NaClO4 at the potential of zero charge, J. Phys.
Chem. B, 1997, 101, pp. 8550-8558.
[10] C. Berggren, P. Stalhandske, J. Brundell, and G. Johansson, A feasibility
study of a capacitive biosensor for direct detection of DNA hybridization,
Electroanalysis, 1999, 11, pp. 156-160.
[11] C. Guiducci, C. Stagni, A. Fischetti, U. Mastromatteo, and L. Benini,
Microelectrodes on a silicon chip for label-free capacitive DNA sensing,
IEEE Sens. J., 2006, 6, pp. 1084-1093.
[12] C. Guiducci, C. Stagni, G. Zuccheri, A. Bogliolo, L. Benini, B. Samori,
and B. Ricco, DNA detection by integrable electronics, Biosens. Bioelectron.,
2004, 19, pp. 781-787.
[13] T. M. Herne and M. J. Tarlov, Characterization of DNA probes immobilized
on gold surfaces, J. Am. Chem. Soc., 1997, 119, pp. 8916-8920.
[14] J. E. B. Randles, Kinetics of rapid electrode reactions, Discuss. Faraday
Soc., 1947, 1, 11-9.
[15] U. Kaatze and Y. Feldman, Broadband dielectric spectrometry of liquids
and biosystems, Meas. Sci. Technol., 2006, 17, R17-R35.
[16] M. Sheffer, V. Vivier, and D. Mandler, Self-assembled monolayers on
Au microelectrodes, Electrochem. Comm., 2007, 9, pp. 2827-2832.
[17] M. A. Rampi, O. J. A. Schueller, and G. M. Whitesides, Alkanethiol
self-assembled monolayers as the dielectric of capacitors with nanoscale
thickness, Appl. Phys. Letters, 1998, 72, pp. 1781-1783.
[18] E. L. S. Wong, E. Chow, and J. J. Gooding, DNA recognition interfaces:
The influence of Interfacial Design on the efficiency and kinetics of
hybridization, Langmuir, 2005, 21, pp. 6957-6965.
[19] S. Carrara, F. K. Gurkaynak, C. Guiducci, C. Stagni, L. Benini,
Y. Leblebici, B. Samori, and G. D. Micheli, Interface layering phenomena
in capacitance detection of DNA with biochips, Sens. Transducers J.,
2007, 76, pp. 969-977.
[20] F. J. Mearns, E. L. S. Wong, K. Short, D. B. Hibbert, and J. J. Gooding,
DNA biosensor concepts based on a change in the DNA persistence length
upon hybridization, Electroanalysis, 2006, 18, pp. 1971-1981.
[21] R. E. Holmlin, P. J. Dandliker, and J. K. Barton, Charge transfer through
the DNA base stack, Angew. Chem. Int. Ed., 1997, 36, pp. 2714-2730.
[22] J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle,
Charge transfer and transport in DNA, Proc. Natl. Acad. Sci. USA, 1998,
95, pp. 12759-12765.
[23] P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler,
K. J. Falk, R. P. Steer, and J. S. Lee, M-DNA: a complex between divalent
metal ions and DNA which behaves as a molecular wire, J. Mol. Biol.,
1999, 294, pp. 477-485.