The Coupling of Photocatalytic Oxidation Processes with Activated Carbon Technologies and the Comparison of the Treatment Methods for Organic Removal from Surface Water

The surface water used in this study was collected from the Chao Praya River at the lower part at the Nonthaburi bridge. It was collected and used throughout the experiment. TOC (also known as DOC) in the range between 2.5 to 5.6 mg/l were investigated in this experiment. The use of conventional treatment methods such as FeCl3 and PAC showed that TOC removal was 65% using FeCl3 and 78% using PAC (powder activated carbon). The advanced oxidation process alone showed only 35% removal of TOC. Coupling advanced oxidation with a small amount of PAC (0.05g/L) increased efficiency by upto 55%. The combined BAC with advanced oxidation process and small amount of PAC demonstrated the highest efficiency of up to 95% of TOC removal and lower sludge production compared with other methods.

Application of Boost Converter for Ride-through Capability of Adjustable Speed Drives during Sag and Swell Conditions

Process control and energy conservation are the two primary reasons for using an adjustable speed drive. However, voltage sags are the most important power quality problems facing many commercial and industrial customers. The development of boost converters has raised much excitement and speculation throughout the electric industry. Now utilities are looking to these devices for performance improvement and reliability in a variety of areas. Examples of these include sags, spikes, or transients in supply voltage as well as unbalanced voltages, poor electrical system grounding, and harmonics. In this paper, simulations results are presented for the verification of the proposed boost converter topology. Boost converter provides ride through capability during sag and swell. Further, input currents are near sinusoidal. This eliminates the need of braking resistor also.

Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Alternative Approach

An alternative iterative computational procedure is proposed for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. An accurate method for curvature radii at contacts with inner and outer raceways in the direction of the motion is used. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections.

Voice Driven Applications in Non-stationary and Chaotic Environment

Automated operations based on voice commands will become more and more important in many applications, including robotics, maintenance operations, etc. However, voice command recognition rates drop quite a lot under non-stationary and chaotic noise environments. In this paper, we tried to significantly improve the speech recognition rates under non-stationary noise environments. First, 298 Navy acronyms have been selected for automatic speech recognition. Data sets were collected under 4 types of noisy environments: factory, buccaneer jet, babble noise in a canteen, and destroyer. Within each noisy environment, 4 levels (5 dB, 15 dB, 25 dB, and clean) of Signal-to-Noise Ratio (SNR) were introduced to corrupt the speech. Second, a new algorithm to estimate speech or no speech regions has been developed, implemented, and evaluated. Third, extensive simulations were carried out. It was found that the combination of the new algorithm, the proper selection of language model and a customized training of the speech recognizer based on clean speech yielded very high recognition rates, which are between 80% and 90% for the four different noisy conditions. Fourth, extensive comparative studies have also been carried out.

Effect of Dietary Supplementation of Different Levels of Black Seed (Nigella Sativa L.) on Growth Performance, Immunological, Hematological and Carcass Parameters of Broiler Chicks

This experiment was conducted to investigate the effect of dietary supplementation of different levels of black seed (Nigella sativa L.) on the performance and immune response of broiler chicks. A total 240 day-old broiler chicks were used and randomly allotted equally into six experimental groups designated as 1, 2, 3, 4, 5 and 6 having black seed at the rate of 0, 2, 4, 6, 8 and 10 g /kg diet respectively. The study was lasted for 42 days. Average body weight, weight gain, relative growth rate, feed conversion, antibody titer against Newcastle disease, phagocytic activity and phagocytic index, some blood parameters(GOT, GPT, Glucose, Cholesterol, Triglyceride, Total protein, Albumen, WBCs, RBCs, Hb and PCV), dressing percentage, weight of different body organs, abdominal fat weight, were determined. It was found that, N. Sativa significantly improved final body weight, total body gain and feed conversion ratio of groups 2 and 3 when compared with the control group. Higher levels of N. Sativa did not improve growth performance of the chicks. Non significant differences were observed for antibody titer against Newcastle virus, WBCs count, serum GOT, glucose level, dressing %, relative liver, spleen, heart and head percentages. Lymphoid organs (Bursa and Thymus) improved significantly with increasing N. Sativa level in all supplemented groups. Serum cholesterol, triglyceride and visible fat % significantly decreased with Nigella sativa supplementation while serum GPT level significantly increased with nigella sativa supplementation.

Change Management in Business Process Modeling Based on Object Oriented Petri Net

Business Process Modeling (BPM) is the first and most important step in business process management lifecycle. Graph based formalism and rule based formalism are the two most predominant formalisms on which process modeling languages are developed. BPM technology continues to face challenges in coping with dynamic business environments where requirements and goals are constantly changing at the execution time. Graph based formalisms incur problems to react to dynamic changes in Business Process (BP) at the runtime instances. In this research, an adaptive and flexible framework based on the integration between Object Oriented diagramming technique and Petri Net modeling language is proposed in order to support change management techniques for BPM and increase the representation capability for Object Oriented modeling for the dynamic changes in the runtime instances. The proposed framework is applied in a higher education environment to achieve flexible, updatable and dynamic BP.

Improved Wavelet Neural Networks for Early Cancer Diagnosis Using Clustering Algorithms

Wavelet neural networks (WNNs) have emerged as a vital alternative to the vastly studied multilayer perceptrons (MLPs) since its first implementation. In this paper, we applied various clustering algorithms, namely, K-means (KM), Fuzzy C-means (FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy C-means (SBFCM) and modified point symmetry-based K-means (MPKM) clustering algorithms in choosing the translation parameter of a WNN. These modified WNNs are further applied to the heterogeneous cancer classification using benchmark microarray data and were compared against the conventional WNN with random initialization method. Experimental results showed that a WNN classifier with the MPKM algorithm is more precise than the conventional WNN as well as the WNNs with other clustering algorithms.

Propagation of Viscous Waves and Activation Energy of Hydrocarbon Fluids

The Euler-s equation of motion is extended to include the viscosity stress tensor leading to the formulation of Navier– Stokes type equation. The latter is linearized and applied to investigate the rotational motion or vorticity in a viscous fluid. Relations for the velocity of viscous waves and attenuation parameter are obtained in terms of viscosity (μ) and the density (¤ü) of the fluid. μ and ¤ü are measured experimentally as a function of temperature for two different samples of light and heavy crude oil. These data facilitated to determine the activation energy, velocity of viscous wave and the attenuation parameter. Shear wave velocity in heavy oil is found to be much larger than the light oil, whereas the attenuation parameter in heavy oil is quite low in comparison to light one. The activation energy of heavy oil is three times larger than light oil.

Periodicity for a Semi–Ratio–Dependent Predator–Prey System with Delays on Time Scales

In this paper, the semi–ratio–dependent predator-prey system with nonmonotonic functional response on time scales is investigated. By using the coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained.

Correspondence between Function and Interaction in Protein Interaction Network of Saccaromyces cerevisiae

Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In the light of the clustering data, we have verified some interactions which were not identified as core interactions in DIP and also, we have characterized some functionally unknown proteins according to the interaction data and functional correlation. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins, also to predict new interactions and to characterize functions of unknown proteins.

Discovery and Capture of Organizational Knowledge from Unstructured Information

Knowledge of an organization does not merely reside in structured form of information and data; it is also embedded in unstructured form. The discovery of such knowledge is particularly difficult as the characteristic is dynamic, scattered, massive and multiplying at high speed. Conventional methods of managing unstructured information are considered too resource demanding and time consuming to cope with the rapid information growth. In this paper, a Multi-faceted and Automatic Knowledge Elicitation System (MAKES) is introduced for the purpose of discovery and capture of organizational knowledge. A trial implementation has been conducted in a public organization to achieve the objective of decision capture and navigation from a number of meeting minutes which are autonomously organized, classified and presented in a multi-faceted taxonomy map in both document and content level. Key concepts such as critical decision made, key knowledge workers, knowledge flow and the relationship among them are elicited and displayed in predefined knowledge model and maps. Hence, the structured knowledge can be retained, shared and reused. Conducting Knowledge Management with MAKES reduces work in searching and retrieving the target decision, saves a great deal of time and manpower, and also enables an organization to keep pace with the knowledge life cycle. This is particularly important when the amount of unstructured information and data grows extremely quickly. This system approach of knowledge management can accelerate value extraction and creation cycles of organizations.

Measurement of UHF Signal Strength Propagating from Road Surface with Vehicle Obstruction

Radio wave propagation on the road surface is a major problem on wireless sensor network for traffic monitoring. In this paper, we compare receiving signal strength on two scenarios 1) an empty road and 2) a road with a vehicle. We investigate the effect of antenna polarization and antenna height to the receiving signal strength. The transmitting antenna is installed on the road surface. The receiving signal is measured 360 degrees around the transmitting antenna with the radius of 2.5 meters. Measurement results show the receiving signal fluctuation around the transmitting antenna in both scenarios. Receiving signal with vertical polarization antenna results in higher signal strength than horizontal polarization antenna. The optimum antenna elevation is 1 meter for both horizon and vertical polarizations with the vehicle on the road. In the empty road, the receiving signal level is unvarying with the elevation when the elevation is greater than 1.5 meters.

Siding Mode Control of Pitch-Rate of an F-16 Aircraft

This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.

Evaluation of The Energy Performance of Shading Devices based on Incremental Costs

Solar shading designs are important for reduction of building energy consumption and improvement of indoor thermal environment. This paper carried out a number of building simulations for evaluation of the energy performance of different shading devices based on incremental costs. The results show that movable shading devices lower incremental costs by up to 50% compared with fixed ones for the same building energy efficiency for residential buildings, and wing panel shadings are much more suitable in commercial buildings than baring screen ones and overhangs for commercial buildings.

A Study of Visitors, on Service Quality, Satisfaction and Loyal in Ya Tam San Bikeway

The main purpose of this study is to analyze the feelings of tourists for the service quality of the bikeway. In addition, this study also analyzed the causal relationship between service quality and satisfaction to visitor-s lane loyalty. In this study, the Ya Tam San bikeway visitor-s subjects, using the designated convenience sampling carried out the survey, a total of 651 questionnaires were validly. Valid questionnaires after statistical analysis, the following findings: 1. Visitor-s lane highest quality of service project: the routes through the region weather pleasant. Lane "with health and sports," the highest satisfaction various factors of service quality and satisfaction, loyal between correlations exist. 4. Guided tours of bikeways, the quality of the environment, and modeling imagery can effectively predict visitor satisfaction. 5. Quality of bikeway, public facilities, guided tours, and modeling imagery can effectively predict visitor loyalty. According to the above results, the study not only makes recommendations to the government units and the bicycle industry, also asked the research direction for future researchers.

Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number

This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher.

Hybrid Optimization of Emission and Economic Dispatch by the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization

This paper present an efficient and reliable technique of optimization which combined fuel cost economic optimization and emission dispatch using the Sigmoid Decreasing Inertia Weight Particle Swarm Optimization algorithm (PSO) to reduce the cost of fuel and pollutants resulting from fuel combustion by keeping the output of generators, bus voltages, shunt capacitors and transformer tap settings within the security boundary. The performance of the proposed algorithm has been demonstrated on IEEE 30-bus system with six generating units. The results clearly show that the proposed algorithm gives better and faster speed convergence then linearly decreasing inertia weight.

Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array

ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.