Total Petroleum Hydrocarbon Contamination in Sediment and Wastewater from the Imam Khomeini and Razi Petrochemical Companies- Iran

The present study was performed in Musa bay (northern part of the Persian Gulf) around the coastal area of Bandare-Imam Khomeini and Razi Petrochemical Companies. Sediment samples and effluent samples were collected from the selected stations, from June 2009 to June 2010. The samples were analyzed to determine the degree of hydrocarbon contamination. The average level of TPH concentration in the study area was more than the natural background value at all of the stations, especially at station BI1 which was the main effluent outlet of Bandar-e- Imam Khomeini petrochemical company. Also the concentration of total petroleum hydrocarbon was monitored in the effluents of aforementioned petrochemical companies and the results showed that the concentration of TPH in the effluents of Bandar-e- Imam Khomeini petrochemical company was greater than Razi petrochemical company which is may be related to the products of Bandar-e- Imam Khomeini petrochemical company (aromatics, polymers, chemicals, fuel).

High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures

We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.

GRI – Reporting Chemical Sector's Environmental Item Disclosures

In this content analysis research note the aim was to explore to how sustainability and especially environmental issues are conveyed into environmental items in annual reports and disclosures. As The Global Reporting Initiative (GRI) is a globally wide multistakeholder process, the enterprises using voluntarily GRI framework are considered to be aware of sustainability and environmental concerns. The findings were that although these enterprises included in an environmentally sensitive industry sector and had special capabilities to consider environmental issues there were few GRIreporting enterprises presented substantially detailed environmental items in audited financial statements. There were only slight differences between publishing years 2008 and 2009 - the beginning years of economic turmoil. The environmental issues seemed not to be considered substantial enough for financial reporting as a basis for concerning investment or voting decisions.

Study the Influence of Chemical Treatment on the Compositional Changes and Defect Structures of ZnS Thin Film

The effect of chemical treatment in CdCl2 on the compositional changes and defect structures of potentially useful ZnS solar cell thin films prepared by vacuum deposition method was studied using the complementary Rutherford backscattering (RBS) and Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various as deposited samples studied. After treatment, perturbation on the intensity is noted; mobile defect states and charge conversion and/or transfer between defect states are found.

In vitro Study of Antibacterial Activity of Cymbopogon citratus

Alcohol and water extracts of Cymbopogon citratus was investigated for anti-bacterial properties and phytochemical constituents. The extract was screened against four gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two grampositive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The antibacterial examination was by disc diffusion techniques, while the photochemical constituents were investigated using standard chemical methods. Results showed that the extracts inhibited the growth of standard and local strains of the organisms used. The treatments were significantly different (P = 0.05). The minimum inhibitory concentration of the extracts against the tested microorganisms ranged between 150mg/ml and 50mg/ml. The alcohol extracts were found to be generally more effective than the water extract. The photochemical analysis revealed the presence of alkaloids and phenol but absence of cardiac and cyanogenic glycosides. The presence of alkaloid and phenols were inferred as being responsible for the anti-bacterial properties of the extracts.

Application of a Modified BCR Approach to Investigate the Mobility and Availability of Trace Elements (As, Ba, Cd, Co, Cr, Cu, Mo,Ni, Pb, Zn, and Hg) from a Solid Residue Matrix Designed for Soil Amendment

Trace element speciation of an integrated soil amendment matrix was studied with a modified BCR sequential extraction procedure. The analysis included pseudo-total concentration determinations according to USEPA 3051A and relevant physicochemical properties by standardized methods. Based on the results, the soil amendment matrix possessed neutralization capacity comparable to commercial fertilizers. Additionally, the pseudo-total concentrations of all trace elements included in the Finnish regulation for agricultural fertilizers were lower than the respective statutory limit values. According to chemical speciation, the lability of trace elements increased in the following order: Hg < Cr < Co < Cu < As < Zn < Ni < Pb < Cd < V < Mo < Ba. The validity of the BCR approach as a tool for chemical speciation was confirmed by the additional acid digestion phase. Recovery of trace elements during the procedure assured the validity of the approach and indicated good quality of the analytical work.

Experimental Study of Adsorption Properties of Acid and Thermal Treated Bentonite from Tehran (Iran)

The Iranian bentonite was first characterized by Scanning Electron Microscopy (SEM), Inductively Coupled Plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), X-ray Diffraction (XRD) and BET. The bentonite was then treated thermally between 150°C-250°C at 15min, 45min and 90min and also was activated chemically with different concentration of sulphuric acid (3N, 5N and 10N). Although the results of thermal activated-bentonite didn-t show any considerable changes in specific surface area and Cation Exchange Capacity (CEC), but the results of chemical treated bentonite demonstrated that such properties have been improved by acid activation process.

Leaching Behaviour of a Low-grade South African Nickel Laterite

The morphology, mineralogical and chemical composition of a low-grade nickel ore from Mpumalanga, South Africa, were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF), respectively. The ore was subjected to atmospheric agitation leaching using sulphuric acid to investigate the effects of acid concentration, leaching temperature, leaching time and particle size on extraction of nickel and cobalt. Analyses results indicated the ore to be a saprolitic nickel laterite belonging to the serpentine group of minerals. Sulphuric acid was found to be able to extract nickel from the ore. Increased acid concentration and temperature only produced low amounts of nickel but improved cobalt extraction. As high as 77.44% Ni was achieved when leaching a -106+75μm fraction with 4.0M acid concentration at 25oC. The kinetics of nickel leaching from the saprolitic ore were studied and the activation energy was determined to be 18.16kJ/mol. This indicated that nickel leaching reaction was diffusion controlled.

On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

Ignition Analysis in Supersonic Turbulent Mixing Layer

Numerical study of two dimensional supersonic hydrogen-air mixing layer is performed to investigate the effect of turbulence and chemical additive on ignition distance. Chemical reaction is treated using detail kinetics. Advection upstream splitting method is used to calculate the fluxes and one equation turbulence model is chosen here to simulate the considered problem. Hydrogen peroxide is used as an additive and the results show that inflow turbulence and chemical additive may drastically decrease the ignition delay in supersonic combustion.

Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy

The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.

Active Packaging Influence on the Shelf Life of Milk Pomade Sweet – Sherbet

The objective of the research was to evaluate the quality of milk pomade sweet – sherbet packed in different packaging materials (Multibarrier 60, met.BOPET/PE, Aluthen), by several packaging technologies – active and modified atmosphere (MAP) (consisting of 100% CO2), and control – in air ambiance. Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture. Samples were stored at the room temperature +21±1 °C. The physiochemical properties – weight losses, moisture, hardening, colour and changes in headspace atmosphere concentration (CO2 and O2) of packs were analysed before packaging and after 2, 4, 6, 8, 10 and 12 storage weeks.

Langmuir–Blodgett Films of Polyaniline for Efficient Detection of Uric Acid

Langmuir–Blodgett (LB) films of polyaniline (PANI) grown onto ITO coated glass substrates were utilized for the fabrication of Uric acid biosensor for efficient detection of uric acid by immobilizing Uricase via EDC–NHS coupling. The modified electrodes were characterized by atomic force microscopy (AFM). The response characteristics after immobilization of uricase were studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The uricase/PANI/ITO/glass bioelectrode studied by CV and EIS techniques revealed detection of uric acid in a wide range of 0.05 mM to 1.0 mM, covering the physiological range in blood. A low Michaelis–Menten constant (Km) of 0.21 mM indicates the higher affinity of immobilized Uricase towards its analyte (uric acid). The fabricated uric acid biosensor based on PANI LB films exhibits excellent sensitivity of 0.21 mA/mM with a response time of 4 s, good reproducibility, long shelf life (8 weeks) and high selectivity.

Effect of Azespirilium Bacteria in Reducing Nitrogen Fertilizers (Urea) and the Interaction of it with Stereptomyces Sp due the Biological Control on the Wheat (Triticum Asstivum) Sustinibelation Culture

An experiment was conducted in October 2008 due the ability replacement plant associate biofertilizers by chemical fertilizers and the qualifying rate of chemical N fertilizers at the moment of using this biofertilizers and the interaction of this biofertilizer on each other. This field experiment has been done in Persepolis (Throne of Jamshid) and arrange by using factorial with the basis of randomized complete block design, in three replication Azespirilium SP bacteria has been admixed with consistence 108 cfu/g and inoculated with seeds of wheat, The streptomyces SP has been used in amount of 550 gr/ha and concatenated on clay and for the qualifying range of chemical fertilizer 4 level of N chemical fertilizer from the source of urea (N0=0, N1=60, N2=120, N3=180) has been used in this experiment. The results indicated there were Significant differences between levels of Nitrogen fertilizer in the entire characteristic which has been measured in this experiment. The admixed Azespirilium SP showed significant differences between their levels in the characteristics such as No. of fertile ear, No. of grain per ear, grain yield, grain protein percentage, leaf area index and the agronomic fertilizer use efficiency. Due the interaction streptomyses with Azespirilium SP bacteria this actinomycet didn-t show any statistically significant differences between it levels.

Treatment of Paper and Pulp Mill Effluent by Coagulation

The pulp and paper mill effluent is one of the high polluting effluent amongst the effluents obtained from polluting industries. All the available methods for treatment of pulp and paper mill effluent have certain drawbacks. The coagulation is one of the cheapest process for treatment of various organic effluents. Thus, the removal of chemical oxygen demand (COD) and colour of paper mill effluent is studied using coagulation process. The batch coagulation process was performed using various coagulants like: aluminium chloride, poly aluminium chloride and copper sulphate. The initial pH of the effluent (Coagulation pH) has tremendous effect on COD and colour removal. Poly aluminium chloride (PAC) as coagulant reduced COD to 84 % and 92 % of colour was removed at an optimum pH 5 and coagulant dose of 8 ml l-1. With aluminium chloride at an optimum pH = 4 and coagulant dose of 5 g l-1, 74 % COD and 86 % colour removal were observed. The results using copper sulphate as coagulant (a less commercial coagulant) were encouraging. At an optimum pH 6 and mass loading of 5 g l-1, 76 % COD reduction and 78 % colour reduction were obtained. It was also observed that after addition of coagulant, the pH of the effluent decreases. The decrease in pH was highest for AlCl3, which was followed by PAC and CuSO4. Significant amount of COD reductions was obtained by coagulation process. Since the coagulation process is the first stage for treatment of effluent and some of the coagulant cations usually remain in the treated effluents. Thus, cation like copper may be one of the good catalyst for second stage of treatment process like wet oxidation. The copper has been found to be good oxidation catalyst then iron and aluminum.

Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Chemical Compositions and Physico-Chemical Properties of Malted Sorghum Flour and Characteristics of Gluten Free Bread

This study investigated the effect of germination on chemical compositions, physio-chemical properties of malted (germinated) red sorghum flours and evaluated characteristics of gluten free breads from sorghum flour. Results showed that germinated sorghum flour had higher amylase activity, swelling power and solubility at 95°C, but lower in the peak, break down, final and set back viscosities than ungerminated sample (p≤0.05). Five gluten free breads made from sorghum flour blends, with different ratios of ungerminated and germinated sorghum flour, were compared for the physical properties with those made from wheat flour. Crumb hardness, cohesiveness, gumminess and chewiness of sorghum breads were found significantly higher than those of wheat bread. With increasing of ungerminated flour proportion, the bread hardness increased while the cohesiveness declined. Sorghum breads appeared red to human eyes with a*values of 10.41-15.77.Their crust and crumb colors differed significantly from those of wheat bread.

Optical Properties of Some A2BCl4 Type Chlorides

Efficient luminescence is reported for the first time in Eu2+ activated double Chlorides A2BCl4 (A=Alkali metal, B=Alkaline earth element). A simple wet-chemical preparation is described. Emission intensities are comparable to that of the commercial phosphor. Excitation covers near UV region. These phosphors may be useful for applications like solid state lighting, scintillation detectors and X-ray storage using photo-stimulable phosphors.

Processes Simulation Study of Coal to Methanol Based on Gasification Technology

This study presents a simulation model for converting coal to methanol, based on gasification technology with the commercial chemical process simulator, Pro/II® V8.1.1. The methanol plant consists of air separation unit (ASU), gasification unit, gas clean-up unit, and methanol synthetic unit. The clean syngas is produced with the first three operating units, and the model has been verified with the reference data from United States Environment Protection Agency. The liquid phase methanol (LPMEOHTM) process is adopted in the methanol synthetic unit. Clean syngas goes through gas handing section to reach the reaction requirement, reactor loop/catalyst to generate methanol, and methanol distillation to get desired purity over 99.9 wt%. The ratio of the total energy combined with methanol and dimethyl ether to that of feed coal is 78.5% (gross efficiency). The net efficiency is 64.2% with the internal power consumption taken into account, based on the assumption that the efficiency of electricity generation is 40%.

A Study of Visual Attention in Diagnosing Cerebellar Tumours

Visual attention allows user to select the most relevant information to ongoing behaviour. This paper presents a study on; i) the performance of people measurements, ii) accurateness of people measurement of the peaks that correspond to chemical quantities from the Magnetic Resonance Spectroscopy (MRS) graphs and iii) affects of people measurements to the algorithm-based diagnosis. Participant-s eye-movement was recorded using eye-tracker tool (Eyelink II). This experiment involves three participants for examining 20 MRS graphs to estimate the peaks of chemical quantities which indicate the abnormalities associated with Cerebellar Tumours (CT). The status of each MRS is verified by using decision algorithm. Analysis involves determination of humans-s eye movement pattern in measuring the peak of spectrograms, scan path and determining the relationship of distributions of fixation durations with the accuracy of measurement. In particular, the eye-tracking data revealed which aspects of the spectrogram received more visual attention and in what order they were viewed. This preliminary investigation provides a proof of concept for use of the eye tracking technology as the basis for expanded CT diagnosis.