Capacitive ECG Measurement by Conductive Fabric Tape

Capacitive electrocardiogram (ECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available on its implementation, especially for multichannel system in standard ECG leads. This paper begins from the design criteria for capacitive ECG measurement and presents a multichannel limb-lead capacitive ECG system with conductive fabric tapes pasted on a double layer PCB as the capacitive sensors. The proposed prototype system incorporates a capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented prototype system has been verified to be stable by theoretic analysis and practical long-term experiments. The signal quality is competitive to that acquired by commercial ECG machines. The feasible size and distance of capacitive sensor have also been evaluated by a series of tests. From the test results, it is suggested to be greater than 60 cm2 in sensor size and be smaller than 1.5 mm in distance for capacitive ECG measurement.

The Role of the Indigenous Languages in Policy Planning and Implementation: A Sociolinguistic Appraisal of the National Rebranding Programme of Nigeria

The nexus between language and culture is so intertwined and very significant that language is largely seen as a vehicle for cultural transmission. Culture itself refers to the aggregate belief system of a people, embellishing its corporate national image or brand. If we conceive national rebranding as a campaign to rekindle the patriotic flame in the consciousness of a people towards its sociocultural imperatives and values, then, Nigerian indigenous linguistic flame has not been ignited. Consequently, the paper contends that the current national rebranding policy remains a myth in the confines of the elitists' intellectual squabble. It however recommends that the use of our indigenous languages should be supported by adequate legislation and also propagated by Nollywood in order to revamp and sustain the people’s interest in their local languages. Finally, the use of the indigenous Nigerian languages demonstrates patriotism, an important ingredient for actualizing a genuine national rebranding.

Comparison of Phylogenetic Trees of Multiple Protein Sequence Alignment Methods

Multiple sequence alignment is a fundamental part in many bioinformatics applications such as phylogenetic analysis. Many alignment methods have been proposed. Each method gives a different result for the same data set, and consequently generates a different phylogenetic tree. Hence, the chosen alignment method affects the resulting tree. However in the literature, there is no evaluation of multiple alignment methods based on the comparison of their phylogenetic trees. This work evaluates the following eight aligners: ClustalX, T-Coffee, SAGA, MUSCLE, MAFFT, DIALIGN, ProbCons and Align-m, based on their phylogenetic trees (test trees) produced on a given data set. The Neighbor-Joining method is used to estimate trees. Three criteria, namely, the dNNI, the dRF and the Id_Tree are established to test the ability of different alignment methods to produce closer test tree compared to the reference one (true tree). Results show that the method which produces the most accurate alignment gives the nearest test tree to the reference tree. MUSCLE outperforms all aligners with respect to the three criteria and for all datasets, performing particularly better when sequence identities are within 10-20%. It is followed by T-Coffee at lower sequence identity (30%), trees scores of all methods become similar.

Modified Data Mining Approach for Defective Diagnosis in Hard Disk Drive Industry

Currently, slider process of Hard Disk Drive Industry become more complex, defective diagnosis for yield improvement becomes more complicated and time-consumed. Manufacturing data analysis with data mining approach is widely used for solving that problem. The existing mining approach from combining of the KMean clustering, the machine oriented Kruskal-Wallis test and the multivariate chart were applied for defective diagnosis but it is still be a semiautomatic diagnosis system. This article aims to modify an algorithm to support an automatic decision for the existing approach. Based on the research framework, the new approach can do an automatic diagnosis and help engineer to find out the defective factors faster than the existing approach about 50%.

Active Learning Strategies and Academic Achievement among Some Psychology Undergraduates in Barbados

This study investigated the relationships between the active learning strategies (discussion, video clips, game show, role– play, five minute paper, clarification pauses, and small group) and academic achievement among a sample of 158 undergraduate psychology students in The University of the West Indies (UWI), Barbados. Results revealed statistically significant positive correlations between active learning strategies and students’ academic achievement; so also the active learning strategies contributed 22% (Rsq=0.222) to the variance being accounted for in academic achievement and this was found to be statistically significant (F(7,150) = 6.12, p < .05). Additionally, group work emerged as the best active learning strategy and had the highest correlation with the students’ academic achievement. These results were discussed in the light of the importance of the active learning strategies promoting academic achievement among the university students.

Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet

A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated and characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.

A Developed Power and Free Conveyor for Light Loads in Intra-Logistics

Nowadays there are lots of applications of power and free conveyors in logistics. They are the most frequently used conveyor systems worldwide. Overhead conveyor technologies like power and free systems are used in the most intra-logistics applications in trade and industry. The automotive, food, beverage and textile industry as well as aeronautic catering or engineering are among the applications. Power and free systems employ different manufacturing intervals in manufacturing as well as in production as temporary store and buffer. Depending on the application area, power and free conveyors are equipped with target controls enabling complex distribution-and sorting tasks. This article introduces a new power and free conveyor design in intra-logistics and explains its components. According to the explanation of the components, a model is created by means of their technical characteristics. Through the CAD software, the model is visualized. After that, the static analysis is evaluated. This analysis helps the calculation of the mandatory state of structures under force action. This powerful model helps companies achieve lower development costs as well as quicker market maturity.

Atmospheric Plasma Innovative Roll-to-Roll Machine for Continuous Materials

Atmospheric plasma is emerging as a promising technology for many industrial sectors, because of its ecological and economic advantages respect to the traditional production processes. For textile industry, atmospheric plasma is becoming a valid alternative to the conventional wet processes, but the plasma machines realized so far do not allow the treatment of fibrous mechanically weak material. Novel atmospheric plasma machine for industrial applications, developed by VenetoNanotech SCpA in collaboration with Italian producer of corona equipment ME.RO SpA is presented. The main feature of this pre-industrial scale machine is the possibility of the inline plasma treatment of delicate fibrous substrates such as fibre sleeves, for example wool tops, cotton fibres, polymeric tows, mineral fibers and so on, avoiding burnings and disruption of the faint materials.

Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques

The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.

Optical Reflectance of Pure and Doped Tin Oxide: From Thin Films to Poly-Crystalline Silicon/Thin Film Device

Films of pure tin oxide SnO2 and in presence of antimony atoms (SnO2-Sb) deposited onto glass substrates have shown a sufficiently high energy gap to be transparent in the visible region, a high electrical mobility and a carrier concentration which displays a good electrical conductivity [1]. In this work, the effects of polycrystalline silicon substrate on the optical properties of pure and Sb doped tin oxide is investigated. We used the APCVD (atmospheric pressure chemical vapour deposition) technique, which is a low-cost and simple technique, under nitrogen ambient, for growing this material. A series of SnO2 and SnO2-Sb have been deposited onto polycrystalline silicon substrates with different contents of antimony atoms at the same conditions of deposition (substrate temperature, flow oxygen, duration and nitrogen atmosphere of the reactor). The effect of the substrate in terms of morphology and nonlinear optical properties, mainly the reflectance, was studied. The reflectance intensity of the device, compared to the reflectance of tin oxide films deposited directly on glass substrate, is clearly reduced on the overall wavelength range. It is obvious that the roughness of the poly-c silicon plays an important role by improving the reflectance and hence the optical parameters. A clear shift in the minimum of the reflectance upon doping level is observed. This minimum corresponds to strong free carrier absorption, resulting in different plasma frequency. This effect is followed by an increase in the reflectance depending of the antimony doping. Applying the extended Drude theory to the combining optical and electrical obtained results these effects are discussed.

Equal Sharing Solutions for Bicooperative Games

In this paper, we discuss the egalitarianism solution (ES) and center-of-gravity of the imputation-set value (CIV) for bicooperative games, which can be seen as the extensions of the solutions for traditional games given by Dutta and Ray [1] and Driessen and Funaki [2]. Furthermore, axiomatic systems for the given values are proposed. Finally, a numerical example is offered to illustrate the player ES and CTV.

Multi-Objective Optimization of a Steam Turbine Stage

The design of a steam turbine is a very complex engineering operation that can be simplified and improved thanks to computer-aided multi-objective optimization. This process makes use of existing optimization algorithms and losses correlations to identify those geometries that deliver the best balance of performance (i.e. Pareto-optimal points). This paper deals with a one-dimensional multi-objective and multi-point optimization of a single-stage steam turbine. Using a genetic optimization algorithm and an algebraic one-dimensional ideal gas-path model based on loss and deviation correlations, a code capable of performing the optimization of a predefined steam turbine stage was developed. More specifically, during this study the parameters modified (i.e. decision variables) to identify the best performing geometries were solidity and angles both for stator and rotor cascades, while the objective functions to maximize were totalto- static efficiency and specific work done. Finally, an accurate analysis of the obtained results was carried out.

Ultra-Light Overhead Conveyor Systems for Logistics Applications

Overhead conveyor systems satisfy by their simple construction, wide application range and their full compatibility with other manufacturing systems, which are designed according to international standards. Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. Crossings are realized by switches. Overhead conveyor systems are particularly used in the automotive industry but also at post offices. Overhead conveyor systems always must be integrated with a logistical process by finding the best way for a cheaper material flow and in order to guarantee precise and fast workflows. With their help, any transport can take place without wasting ground and space, without excessive company capacity, lost or damaged products, erroneous delivery, endless travels and without wasting time. Ultra-light overhead conveyor systems provide optimal material flow, which produces profit and saves time. This article illustrates the advantages of the structure of the ultra-light overhead conveyor systems in logistics applications and explains the steps of their system design. After an illustration of the steps, currently available systems on the market will be shown by means of their technical characteristics. Due to their simple construction, demands to an ultra-light overhead conveyor system will be illustrated.

Pollution and Water Quality of the Beshar River

The Beshar River is one aquatic ecosystem,which is affected by pollutants. This study was conducted to evaluate the effects of human activities on the water quality of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial, agricultural and other activities in this region such as factories, hospitals, agricultural farms, urban surface runoff and effluent of wastewater treatment plants. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analysed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2009. The study shows that the BOD5 value of station 1 is at a minimum (1.5 ppm) and increases downstream from stations 2 to 4 to a maximum (7.2 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (9.55 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.4 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations. The physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.

Posture Recognition using Combined Statistical and Geometrical Feature Vectors based on SVM

It is hard to percept the interaction process with machines when visual information is not available. In this paper, we have addressed this issue to provide interaction through visual techniques. Posture recognition is done for American Sign Language to recognize static alphabets and numbers. 3D information is exploited to obtain segmentation of hands and face using normal Gaussian distribution and depth information. Features for posture recognition are computed using statistical and geometrical properties which are translation, rotation and scale invariant. Hu-Moment as statistical features and; circularity and rectangularity as geometrical features are incorporated to build the feature vectors. These feature vectors are used to train SVM for classification that recognizes static alphabets and numbers. For the alphabets, curvature analysis is carried out to reduce the misclassifications. The experimental results show that proposed system recognizes posture symbols by achieving recognition rate of 98.65% and 98.6% for ASL alphabets and numbers respectively.

Some Issues on Integrating Telepresence Technology into Industrial Robotic Assembly

Since the 1940s, many promising telepresence research results have been obtained. However, telepresence technology still has not reached industrial usage. As human intelligence is necessary for successful execution of most manual assembly tasks, the ability of the human is hindered in some cases, such as the assembly of heavy parts of small/medium lots or prototypes. In such a case of manual assembly, the help of industrial robots is mandatory. The telepresence technology can be considered as a solution for performing assembly tasks, where the human intelligence and haptic sense are needed to identify and minimize the errors during an assembly process and a robot is needed to carry heavy parts. In this paper, preliminary steps to integrate the telepresence technology into industrial robot systems are introduced. The system described here combines both, the human haptic sense and the industrial robot capability to perform a manual assembly task remotely using a force feedback joystick. Mapping between the joystick-s Degrees of Freedom (DOF) and the robot-s ones are introduced. Simulation and experimental results are shown and future work is discussed.

Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation

Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.

Performance of Compound Enhancement Algorithms on Dental Radiograph Images

The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.

Global Behavior in (Q-xy)2 Potential

The general global behavior of particle S a non-linear (Q - xy)2 potential cannot be revealed a Poincare surface of section method (PSS) because inost trajectories take practically infinitely long time to integrate numerically before they come back to the surface. In this study as an alternative to PSS, a multiple scale perturbation is applied to analyze global adiabatic, non-adiabatic and chaotic behavior of particles in this potential. It was found that the results can be summarized as a form of a Fermi-like map. Additionally, this method gives a variation of global stochasticity criteria with Q.

Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.