Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers

This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.

Dose due the Incorporation of Radionuclides Using Teeth as Bioindicators nearby Caetité Uranium Mines

Uranium mining and processing in Brazil occur in a northeastern area near to Caetité-BA. Several Non-Governmental Organizations claim that uranium mining in this region is a pollutant causing health risks to the local population,but those in charge of the complex extraction and production of“yellow cake" for generating fuel to the nuclear power plants reject these allegations. This study aimed at identifying potential problems caused by mining to the population of Caetité. In this, work,the concentrations of 238U, 232Th and 40K radioisotopes in the teeth of the Caetité population were determined by ICP-MS. Teeth are used as bioindicators of incorporated radionuclides. Cumulative radiation doses in the skeleton were also determined. The concentration values were below 0.008 ppm, and annual effective dose due to radioisotopes are below to the reference values. Therefore, it is not possible to state that the mining process in Caetité increases pollution or radiation exposure in a meaningful way.

A Model of Market Segmentation for the Customers of Mellat Bank in Iran

If organizations like Mellat Bank want to identify its customer market completely to reach its specified goals, it can segment the market to offer the product package to the right segment. Our objective is to offer a segmentation model for Iran banking market in Mellat bank view. The methodology of this project is combined by “segmentation on the basis of four part-quality variables" and “segmentation on the basis of different in means". Required data are gathered from E-Systems and researcher personal observation. Finally, the research offers the organization that at first step form a four dimensional matrix with 756 segments using four variables named value-based, behavioral, activity style, and activity level, and at the second step calculate the means of profit for every cell of matrix in two distinguished work level (levels α1:normal condition and α2: high pressure condition) and compare the segments by checking two conditions that are 1- homogeneity every segment with its sub segment and 2- heterogeneity with other segments, and so it can do the necessary segmentation process. After all, the last offer (more explained by an operational example and feedback algorithm) is to test and update the model because of dynamic environment, technology, and banking system.

Removal of Arsenic (III) from Contaminated Waterby Synthetic Nano Size Zerovalent Iron

The present work was conducted for Arsenic (III) removal, which one of the most poisonous groundwater pollutants, by synthetic nano size zerovalent iron (nZVI). Batch experiments were performed to investigate the influence of As (III), nZVI concentration, pH of solution and contact time on the efficiency of As (III) removal. nZVI was synthesized by reduction of ferric chloride by sodium borohydrid. SEM and XRD were used to determine particle size and characterization of produced nanoparticles. Up to 99.9% removal efficiency for arsenic (III) was obtained by nZVI dosage of 1 g/L at time equal to 10 min. and pH=7. It could be concluded that the removal efficiency were enhanced with increasing of ZVI dosage and reaction time, but decreased with increasing of arsenic concentration and pH for nano sized ZVI. nZVI presented an outstanding ability to remove As (III) due to not only a high surface area and low particle size but also to high inherent activity.

A New Self-Adaptive EP Approach for ANN Weights Training

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization

Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.

Prototype for Enhancing Information Security Awareness in Industry

Human-related information security breaches within organizations are primarily caused by employees who have not been made aware of the importance of protecting the information they work with. Information security awareness is accordingly attracting more attention from industry, because stakeholders are held accountable for the information with which they work. The authors developed an Information Security Retrieval and Awareness model – entitled “ISRA" – that is tailored specifically towards enhancing information security awareness in industry amongst all users of information, to address shortcomings in existing information security awareness models. This paper is principally aimed at expounding a prototype for the ISRA model to highlight the advantages of utilizing the model. The prototype will focus on the non-technical, humanrelated information security issues in industry. The prototype will ensure that all stakeholders in an organization are part of an information security awareness process, and that these stakeholders are able to retrieve specific information related to information security issues relevant to their job category, preventing them from being overburdened with redundant information.

Surgical Theater Utilization and PACU Staffing

In this work, the surgical theater of a local hospital in KSA was analyzed using simulation. The focus was on attempting to answer questions related to how many Operating Rooms (ORs) to open and to analyze the performance of the surgical theater in general and mainly the Post Anesthesia Care Unit (PACU) to assist making decisions regarding PACU staffing. The surgical theater consists of ten operating rooms and the PACU unit which has a maximum capacity of fifteen beds. Different sequencing rules to sequence the surgical cases were tested and the Longest Case First (LCF) were superior to others. The results of the different alternatives developed and tested can be used by the manager as a tool to plan and manage the OR and PACU

Minimization of Power Loss in Distribution Networks by Different Techniques

Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.

Biosensor Measurement of Urea Coonncentration in Human Blood Serum

An application of the highly biosensor based on pH-sensitive field immobilized urease for urea analysis was demo The main analytical characteristics of the bios determined; the conditions of urea measureme blood were optimized. A conceptual possibility biosensor for detection of urea concentratio patients suffering from renal insufficiency was sensitive and selective effect transistor and monstrated in this work. iosensor developed were ment in real samples of ility of application of the tion in blood serum of as shown.

Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement

This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.

Towards CO2 Adsorption Enhancement via Polyethyleneimine Impregnation

To reduce the carbon dioxide emission into the atmosphere, adsorption is believed to be one of the most attractive methods for post-combustion treatment of flue gas. In this work, activated carbon (AC) was modified by polyethylenimine (PEI) via impregnation in order to enhance CO2 adsorption capacity. The adsorbents were produced at 0.04, 0.16, 0.22, 0.25, and 0.28 wt% PEI/AC. The adsorption was carried out at a temperature range from 30 °C to 75 °C and five different gas pressures up to 1 atm. TG-DTA, FT-IR, UV-visible spectrometer, and BET were used to characterize the adsorbents. Effects of PEI loading on the AC for the CO2 adsorption were investigated. Effectiveness of the adsorbents on the CO2 adsorption including CO2 adsorption capacity and adsorption temperature was also investigated. Adsorption capacities of CO2 were enhanced with the increase in the amount of PEI from 0.04 to 0.22 wt% PEI before the capacities decreased onwards from0.25 wt% PEI at 30 °C. The 0.22 wt% PEI/AC showed higher adsorption capacity than the AC for adsorption at 50 °C to 75 °C.

Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON

Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.

Software Model for a Computer Based Training for an HVDC Control Desk Simulator

With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.

Network State Classification based on the Statistical properties of RTT for an Adaptive Multi-State Proactive Transport Protocol for Satellite based Networks

This paper attempts to establish the fact that Multi State Network Classification is essential for performance enhancement of Transport protocols over Satellite based Networks. A model to classify Multi State network condition taking into consideration both congestion and channel error is evolved. In order to arrive at such a model an analysis of the impact of congestion and channel error on RTT values has been carried out using ns2. The analysis results are also reported in the paper. The inference drawn from this analysis is used to develop a novel statistical RTT based model for multi state network classification. An Adaptive Multi State Proactive Transport Protocol consisting of Proactive Slow Start, State based Error Recovery, Timeout Action and Proactive Reduction is proposed which uses the multi state network state classification model. This paper also confirms through detail simulation and analysis that a prior knowledge about the overall characteristics of the network helps in enhancing the performance of the protocol over satellite channel which is significantly affected due to channel noise and congestion. The necessary augmentation of ns2 simulator is done for simulating the multi state network classification logic. This simulation has been used in detail evaluation of the protocol under varied levels of congestion and channel noise. The performance enhancement of this protocol with reference to established protocols namely TCP SACK and Vegas has been discussed. The results as discussed in this paper clearly reveal that the proposed protocol always outperforms its peers and show a significant improvement in very high error conditions as envisaged in the design of the protocol.

A Trainable Neural Network Ensemble for ECG Beat Classification

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Modeling of Session Initiation Protocol Invite Transaction using Colored Petri Nets

Wireless mobile communications have experienced the phenomenal growth through last decades. The advances in wireless mobile technologies have brought about a demand for high quality multimedia applications and services. For such applications and services to work, signaling protocol is required for establishing, maintaining and tearing down multimedia sessions. The Session Initiation Protocol (SIP) is an application layer signaling protocols, based on request/response transaction model. This paper considers SIP INVITE transaction over an unreliable medium, since it has been recently modified in Request for Comments (RFC) 6026. In order to help in assuring that the functional correctness of this modification is achieved, the SIP INVITE transaction is modeled and analyzed using Colored Petri Nets (CPNs). Based on the model analysis, it is concluded that the SIP INVITE transaction is free of livelocks and dead codes, and in the same time it has both desirable and undesirable deadlocks. Therefore, SIP INVITE transaction should be subjected for additional updates in order to eliminate undesirable deadlocks. In order to reduce the cost of implementation and maintenance of SIP, additional remodeling of the SIP INVITE transaction is recommended.

Research on IBR-Driven Distributed Collaborative Visualization System

Image-based Rendering(IBR) techniques recently reached in broad fields which leads to a critical challenge to build up IBR-Driven visualization platform where meets requirement of high performance, large bounds of distributed visualization resource aggregation and concentration, multiple operators deploying and CSCW design employing. This paper presents an unique IBR-based visualization dataflow model refer to specific characters of IBR techniques and then discusses prominent feature of IBR-Driven distributed collaborative visualization (DCV) system before finally proposing an novel prototype. The prototype provides a well-defined three level modules especially work as Central Visualization Server, Local Proxy Server and Visualization Aid Environment, by which data and control for collaboration move through them followed the previous dataflow model. With aid of this triple hierarchy architecture of that, IBR oriented application construction turns to be easy. The employed augmented collaboration strategy not only achieve convenient multiple users synchronous control and stable processing management, but also is extendable and scalable.

Straight Line Defect Detection with Feed Forward Neural Network

Nowadays, hard disk is one of the most popular storage components. In hard disk industry, the hard disk drive must pass various complex processes and tested systems. In each step, there are some failures. To reduce waste from these failures, we must find the root cause of those failures. Conventionall data analysis method is not effective enough to analyze the large capacity of data. In this paper, we proposed the Hough method for straight line detection that helps to detect straight line defect patterns that occurs in hard disk drive. The proposed method will help to increase more speed and accuracy in failure analysis.

Design of an M-Channel Cosine Modulated Filter Bank by New Cosh Window Based FIR Filters

In this paper newly reported Cosh window function is used in the design of prototype filter for M-channel Near Perfect Reconstruction (NPR) Cosine Modulated Filter Bank (CMFB). Local search optimization algorithm is used for minimization of distortion parameters by optimizing the filter coefficients of prototype filter. Design examples are presented and comparison has been made with Kaiser window based filterbank design of recently reported work. The result shows that the proposed design approach provides lower distortion parameters and improved far-end suppression than the Kaiser window based design of recent reported work.