Optimal Manufacturing Scheduling for Dependent Details Processing

The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.

An Artificial Intelligent Technique for Robust Digital Watermarking in Multiwavelet Domain

In this paper, an artificial intelligent technique for robust digital image watermarking in multiwavelet domain is proposed. The embedding technique is based on the quantization index modulation technique and the watermark extraction process does not require the original image. We have developed an optimization technique using the genetic algorithms to search for optimal quantization steps to improve the quality of watermarked image and robustness of the watermark. In addition, we construct a prediction model based on image moments and back propagation neural network to correct an attacked image geometrically before the watermark extraction process begins. The experimental results show that the proposed watermarking algorithm yields watermarked image with good imperceptibility and very robust watermark against various image processing attacks.

Consideration a Novel Manner for Data Sending Quality in Heterogeneous Radio Networks

In real-time networks a large number of application programs are relying on video data and heterogeneous data transmission techniques. The aim of this research is presenting a method for end-to-end vouch quality service in surface applicationlayer for sending video data in comparison form in wireless heterogeneous networks. This method tries to improve the video sending over the wireless heterogeneous networks with used techniques in surface layer, link and application. The offered method is showing a considerable improvement in quality observing by user. In addition to this, other specifications such as shortage of data load that had require to resending and limited the relation period length to require time for second data sending, help to be used the offered method in the wireless devices that have a limited energy. The presented method and the achieved improvement is simulated and presented in the NS-2 software.

Speech Enhancement by Marginal Statistical Characterization in the Log Gabor Wavelet Domain

This work presents a fusion of Log Gabor Wavelet (LGW) and Maximum a Posteriori (MAP) estimator as a speech enhancement tool for acoustical background noise reduction. The probability density function (pdf) of the speech spectral amplitude is approximated by a Generalized Laplacian Distribution (GLD). Compared to earlier estimators the proposed method estimates the underlying statistical model more accurately by appropriately choosing the model parameters of GLD. Experimental results show that the proposed estimator yields a higher improvement in Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral Distortion (LSD) in two different noisy environments compared to other estimators.

Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution

In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.

Specification of Agent Explicit Knowledge in Cryptographic Protocols

Cryptographic protocols are widely used in various applications to provide secure communications. They are usually represented as communicating agents that send and receive messages. These agents use their knowledge to exchange information and communicate with other agents involved in the protocol. An agent knowledge can be partitioned into explicit knowledge and procedural knowledge. The explicit knowledge refers to the set of information which is either proper to the agent or directly obtained from other agents through communication. The procedural knowledge relates to the set of mechanisms used to get new information from what is already available to the agent. In this paper, we propose a mathematical framework which specifies the explicit knowledge of an agent involved in a cryptographic protocol. Modelling this knowledge is crucial for the specification, analysis, and implementation of cryptographic protocols. We also, report on a prototype tool that allows the representation and the manipulation of the explicit knowledge.

Geospatial Network Analysis Using Particle Swarm Optimization

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Bayesian Belief Networks for Test Driven Development

Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development.

Formosa3: A Cloud-Enabled HPC Cluster in NCHC

This paper proposes a new approach to offer a private cloud service in HPC clusters. In particular, our approach relies on automatically scheduling users- customized environment request as a normal job in batch system. After finishing virtualization request jobs, those guest operating systems will dismiss so that compute nodes will be released again for computing. We present initial work on the innovative integration of HPC batch system and virtualization tools that aims at coexistence such that they suffice for meeting the minimizing interference required by a traditional HPC cluster. Given the design of initial infrastructure, the proposed effort has the potential to positively impact on synergy model. The results from the experiment concluded that goal for provisioning customized cluster environment indeed can be fulfilled by using virtual machines, and efficiency can be improved with proper setup and arrangements.

Throughput Enhancement in AUDTWMN Using Throwboxes – An Overview

Delay and Disruption Tolerant Networking is part of the Inter Planetary Internet with primary application being Deep Space Networks. Its Terrestrial form has interesting research applications such as Alagappa University Delay Tolerant Water Monitoring Network which doubles as test beds for improvising its routing scheme. DTNs depend on node mobility to deliver packets using a store-carry-and forward paradigm. Throwboxes are small and inexpensive stationary devices equipped with wireless interfaces and storage. We propose the use of Throwboxes to enhance the contact opportunities of the nodes and hence improve the Throughput. The enhancement is evaluated using Alunivdtnsim, a desktop simulator in C language and the results are graphically presented.

Improving the Performance of Proxy Server by Using Data Mining Technique

Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.

Modification by the River Vaslui of the Hydrological Regime and Its Economic Implications (Romania)

The influence of human activities produced by dams along the river beds is minor, but the location of accumulation of water directly influences the hydrological regime. The most important effect of the influence of damming on the way water flows decreases the frequency of floods. The water rate controls the water flow of the dams. These natural reservoirs become dysfunctional and, as a result, a new distribution of flow in the downstream sector, where maximum flow is, brings about, in this case, higher values. In addition to fishing, middle and lower courses of rivers located by accumulation also have a role in mitigating flood waves, thus providing flood protection. The Vaslui also ensures a good part of the needs of the town water supply. The most important lake is Solesti, close to the Vaslui River, opened in 1974. A hydrological regime of accumulation is related to an anthropogenic and natural drainage system. The design conditions and their manoeuvres drain or fill the water courses.

Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol

Contamination of aromatic compounds in water can cause severe long-lasting effects not only for biotic organism but also on human health. Several alternative technologies for remediation of polluted water have been attempted. One of these is adsorption process of aromatic compounds by using organic modified clay mineral. Porous structure of clay is potential properties for molecular adsorptivity and it can be increased by immobilizing hydrophobic structure to attract organic compounds. In this work natural montmorillonite were modified with cetyltrimethylammonium (CTMA+) and was evaluated for use as adsorbents of aromatic compounds: benzene, toluene, and 2-chloro phenol in its single and multicomponent solution by ethanol:water solvent. Preparation of CTMA-montmorillonite was conducted by simple ion exchange procedure and characterization was conducted by using x-day diffraction (XRD), Fourier-transform infra red (FTIR) and gas sorption analysis. The influence of structural modification of montmorillonite on its adsorption capacity and adsorption affinity of organic compound were studied. It was shown that adsorptivity of montmorillonite was increased by modification associated with arrangements of CTMA+ in the structure even the specific surface area of modified montmorillonite was lower than raw montmorillonite. Adsorption rate indicated that material has affinity to adsorb compound by following order: benzene> toluene > 2-chloro phenol. The adsorption isotherms of benzene and toluene showed 1st order adsorption kinetic indicating a partition phenomenon of compounds between the aqueous and organophilic CTMAmontmorillonite.

An Improved Construction Method for MIHCs on Cycle Composition Networks

Many well-known interconnection networks, such as kary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC-s, on interconnection networks are published. In this paper, using an improved construction method, we obtain MIHC-s on cycle composition networks with a much weaker condition than the known result. In fact, we established the existence of MIHC-s in the cycle composition networks and the result is optimal in the sense that the number of MIHC-s we constructed is maximal.

The Oxidative Stress and the Antioxidant Defense of the Lower Vegetables towards an Environmental Pollution

The use of bioindicators plants (lichens, bryophytes and Sphagnum....) in monitoring pollution by heavy metals has been the subject of several works. However, few studies have addressed the impact of specific type-s pollutants (fertilizers, pesticides.) on these organisms. We propose in this work to make the highlighting effect of NPKs (NPK: nitrogen-phosphate-potassium-sulfate (NP2O5K2O) (15,15,15), at concentrations of 10, 20, 30 , 40 and 50mM/L) on the activity of detoxification enzymes (GSH/GST, CAT, APX and MDA) of plant bioindicators (mosses and lichens) after treatment for 3 and 7 days. This study shows the important role of the defense system in the accumulation and tolerance to chemical pollutants through the activation of enzymatic (GST (glutathione-S-transferase, APX (ascorbat peroxidase), CAT (catalase)) and nonenzymatic biomarkers (GSH (glutathione), MDA (malondialdehyde)) against oxidative stress generated by the NPKs.

Improvement of Lipase Catalytic Properties by Immobilization in Hybrid Matrices

Lipases are enzymes particularly amenable for immobilization by entrapment methods, as they can work equally well in aqueous or non-conventional media and long-time stability of enzyme activity and enantioselectivity is needed to elaborate more efficient bioprocesses. The improvement of Pseudomonas fluorescens (Amano AK) lipase characteristics was investigated by optimizing the immobilization procedure in hybrid organic-inorganic matrices using ionic liquids as additives. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety are beneficial for the activity of immobilized lipase. Silanes with alkyl- or aryl nonhydrolizable groups used as precursors in combination with tetramethoxysilane could generate composites with higher enantioselectivity compared to the native enzyme in acylation reactions of secondary alcohols. The optimal effect on both activity and enantioselectivity was achieved for the composite made from octyltrimethoxysilane and tetramethoxysilane at 1:1 molar ratio (60% increase of total activity following immobilization and enantiomeric ratio of 30). Ionic liquids also demonstrated valuable properties as reaction media for the studied reactions, comparable with the usual organic solvent, hexane.

Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

CFD Investigation of Interface Location in Stirred Tanks with a Concave Impeller

In this work study the location of interface in a stirred vessel with a Concave impeller by computational fluid dynamic was presented. To modeling rotating the impeller, sliding mesh (SM) technique was used and standard k-ε model was selected for turbulence closure. Mean tangential, radial and axial velocities and also turbulent kinetic energy (k) and turbulent dissipation rate (ε) in various points of tank was investigated. Results show sensitivity of system to location of interface and radius of 7 to 10cm for interface in the vessel with existence characteristics cause to increase the accuracy of simulation.

Solution of Interval-valued Manufacturing Inventory Models With Shortages

A manufacturing inventory model with shortages with carrying cost, shortage cost, setup cost and demand quantity as imprecise numbers, instead of real numbers, namely interval number is considered here. First, a brief survey of the existing works on comparing and ranking any two interval numbers on the real line is presented. A common algorithm for the optimum production quantity (Economic lot-size) per cycle of a single product (so as to minimize the total average cost) is developed which works well on interval number optimization under consideration. Finally, the designed algorithm is illustrated with numerical example.