A Study of Cardio Pulmonary Changes during Upper Gastrointestinal Endoscopy

Upper gastrointestinal endoscopy is a commonly performed diagnostic and therapeutic procedure and has many adverse effects like cardiopulmonary complications, complications related to sedation, infectious complications, bleeding and perforation. So this study was undertaken to evaluate important variables like patient’s age, gender and stage of the procedure in relation to the cardiopulmonary changes during diagnostic upper gastrointestinal endoscopy by monitoring oxygen saturation, blood pressure, heart rate and electrocardiogram. This is a prospective longitudinal hospital based study involving a total of 140 consecutive patients, at Sri. B. M. Patil Medical College, Hospital and Research Centre. Cardiopulmonary changes during upper gastrointestinal endoscopy are more common in the age groups of 51-60 years, with equal frequency in both male and female. Oxygen saturation levels decreased by about 4% in both sexes during introduction of endoscopy. Mild to moderate hypoxia was found in 32% of the study group. Severe hypoxia was found in 5% of the patients, mostly in those patients who are above 50 years of age. Tachycardia was noted in 88% of the study group patients. Blood pressure increased to hypertension levels in 22 patients (15.7%) which returned to normal within few minutes after the procedure. S-T depression was noticed in 4% of patients and T wave inversion in 8% of patients during upper gastrointestinal endoscopy. All these changes disappeared after 10 minutes after the endoscopy. Cardiopulmonary changes are common during upper gastrointestinal endoscopy. Maximum changes in oxygen saturation, heart rate and blood pressure occurred immediately after the introduction of endoscope. The cardiopulmonary changes did not manifest into any identifiable clinical symptoms. The rate of recovery was faster in younger age groups and women.

Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity

Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.

Cluster Based Energy Efficient and Fault Tolerant n-Coverage in Wireless Sensor Network

Coverage conservation and extend the network lifetime are the primary issues in wireless sensor networks. Due to the large variety of applications, coverage is focus to a wide range of interpretations. The applications necessitate that each point in the area is observed by only one sensor while other applications may require that each point is enclosed by at least sensors (n>1) to achieve fault tolerance. Sensor scheduling activities in existing Transparent and non- Transparent relay modes (T-NT) Mobile Multi-Hop relay networks fails to guarantee area coverage with minimal energy consumption and fault tolerance. To overcome these issues, Cluster based Energy Competent n- coverage scheme called (CEC n-coverage scheme) to ensure the full coverage of a monitored area while saving energy. CEC n-coverage scheme uses a novel sensor scheduling scheme based on the n-density and the remaining energy of each sensor to determine the state of all the deployed sensors to be either active or sleep as well as the state durations. Hence, it is attractive to trigger a minimum number of sensors that are able to ensure coverage area and turn off some redundant sensors to save energy and therefore extend network lifetime. In addition, decisive a smallest amount of active sensors based on the degree coverage required and its level. A variety of numerical parameters are computed using ns2 simulator on existing (T-NT) Mobile Multi-Hop relay networks and CEC n-coverage scheme. Simulation results showed that CEC n-coverage scheme in wireless sensor network provides better performance in terms of the energy efficiency, 6.61% reduced fault tolerant in terms of seconds and the percentage of active sensors to guarantee the area coverage compared to exiting algorithm.

A New Approach to Design an Efficient CIC Decimator Using Signed Digit Arithmetic

Any digital processing performed on a signal with larger nyquist interval requires more computation than signal processing performed on smaller nyquist interval. The sampling rate alteration generates the unwanted effects in the system such as spectral aliasing and spectral imaging during signal processing. Multirate-multistage implementation of digital filter can result a significant computational saving than single rate filter designed for sample rate conversion. In this paper, we presented an efficient cascaded integrator comb (CIC) decimation filter that perform fast down sampling using signed digit adder algorithm with compensated frequency droop that arises due to aliasing effect during the decimation process. This proposed compensated CIC decimation filter structure with a hybrid signed digit (HSD) fast adder provide an improved performance in terms of down sampling speed by 65.15% than ripple carry adder (RCA) and reduced area and power by 57.5% and 0.01 % than signed digit (SD) adder algorithms respectively.

The Creation of Contemporary Apparel Inspired by the Structural Pattern Sofa Vimanmek Mansion

In most of apparel creation, the designer usually uses standard pattern as a fundamental of pattern making. In the design of each kind of apparel, standard pattern is starting point of production. The importance of standard pattern is that it is able to have the apparel fits to general people. Therefore, standard pattern is standardized to be the same. Regardless which type of apparel, its standard pattern will have similar production. Anyhow, the author sees that the apparel design, regardless for which type of apparel, has to stick on the standard pattern as a fundamental of apparel design and this seems to be a limitation of apparel design without any designing alternative being developed. In the research on the creation of contemporary apparel Inspired by the sofa’s pattern structure in Vimanmek Mansion. The author has applied the pattern of the sofa and armchair to be the principle in the apparel design, instead of standard pattern, to create new form of structures and shapes making the contemporary apparel becomes more interesting and different than previous, can be used in daily life, as well as being a new alternative for apparel design. Those who are interesting in such idea can apply and develop it to be more variety further.

CFD Simulation of Hydrodynamic Behaviors and Gas-Liquid Mass Transfer in a Stirred Airlift Bioreactor

The speed profiles, gas holdup (eG) and global oxygen transfer coefficient (kLa) from a stirred airlift bioreactor using water as the fluid model, was investigated by computational fluid dynamics modeling. The parameters predicted by the computer model were validated with the experimental dates. The CFD results were very close to those obtained experimentally. During the simulation it was verified a prevalent impeller effect at low speeds, propelling a large volume of fluid against the walls of the vessel, which without recirculation, results in low values of eG and kLa; however, by increasing air velocity, the impeller effect is smaller with the air flow being greater, in the region of the riser, causing fluid recirculation, which explains the increase in eG and kLa.

Study of Shaft Voltage on Short Circuit Alternator with Static Frequency Converter

Electric machines are driven nowadays by static system popularly known as soft starter. This paper describes a thyristor based static frequency converter (SFC) to run a large synchronous machine installed at a short circuit test laboratory. Normally a synchronous machine requires prime mover or some other driving mechanism to run. This machine doesn’t need a prime mover as it operates in dual mode. In the beginning SFC starts this machine as a motor to achieve the full speed. Thereafter whenever required it can be converted to generator mode. This paper begins with the various starting methodology of synchronous machine. Detailed of SFC with different operational modes have been analyzed. Shaft voltage is a very common phenomenon for the machines with static drives. Various causes of shaft voltages in perspective with this machine are the main attraction of this paper.

User Behavior Based Enhanced Protocol (UBEP) for Secure Near Field Communication

With increase in the unauthorized users access, it is required to increase the security in the Near Field Communication (NFC). In the paper we propose a user behavior based enhanced protocol entitled ‘User Behavior based Enhanced Protocol (UBEP)’ to increase the security in NFC enabled devices. The UBEP works on the history of interaction of a user with system.The propose protocol considers four different factors (touch, time and distance & angle) of user behavior to know the authenticity or authorization of the users. These factors can be same for a user during interaction with the system. The UBEP uses two phase user verification system to authenticate a user. Firstly the acquisition phase is used to acquire and store the user interaction with NFC device and the same information is used in future to detect the authenticity of the user. The second phase (recognition) uses analysis of current and previous scenario of user interaction and digital signature verification system to finally authenticate user. The analysis of user based input makes a NFC transaction more advance and secure. This security is very tactical because it is completely depends on usage of the device.

Energy Saving Stove for Stew Coconut Sugar

The purposes of this research is aim to build the energy saving stove for stew coconut sugar. The research started from explores ceramic raw materials in local area, create the appropriate mixture of ceramic raw materials for construction material of stove, and make it by ceramic process. It includes design and build the energy saving stove, experiment the efficiency of energy saving stove as to thermal efficiency, energy saving, performance of time, and energy cost efficiency, transfer the knowledge for community, stove manufacturers, and technicians. The findings must be useful to the coconut sugar enterprises producing, to reduce the cost of production, preserve natural resources, and environments.

A Robust Method for Finding Nearest-Neighbor using Hexagon Cells

In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.

Predicting Effective Permeability of Nanodielectric Composites Bonded by Soft Magnetic Nanoparticles

Dielectric materials play an important role in broad applications, such as electrical and electromagnetic applications. This research studied the prediction of effective permeability of composite and nanocomposite dielectric materials based on theoretical analysis to specify the effects of embedded magnetic inclusions in enhancing magnetic properties of dielectrics. Effective permeability of Plastics and Glass nanodielectrics have been predicted with adding various types and percentages of magnetic nano-particles (Fe, Ni-Cu, Ni-Fe, MgZn_Ferrite, NiZn_Ferrite) for formulating new nanodielectric magnetic industrial materials. Soft nanoparticles powders that have been used in new nanodielectrics often possess the structure of a particle size in the range of micrometer- to nano-sized grains and magnetic isotropy, e.g., a random distribution of magnetic easy axes of the nanograins. It has been succeeded for enhancing characteristics of new nanodielectric magnetic industrial materials. The results have shown a significant effect of inclusions distribution on the effective permeability of nanodielectric magnetic composites, and so, explained the effect of magnetic inclusions types and their concentration on the effective permeability of nanodielectric magnetic materials.

Voltage Stability Assessment and Enhancement Using STATCOM - A Case Study

Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton Raphson method. Using Q-V curves the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Using Lean Six-Sigma in the Improvement of Service Quality at Aviation Industry: Case Study at the Departure Area in KKIA

The service quality is a significant element in aviation industry especially in the international airports. Through this paper, the researchers built a model based on Lean six sigma methodologies and applied it in the departure area at KKIA (King Khalid International Airport) in order to assess it. This model characterized with many special features that can become over the cultural differences in aviation industry since it is considered the most critical circumstance in this field. Applying the model of this study is depending on following the DMAIC procedure systemized in lean thinking aspects. This model of Lean-six-sigma as a managerial procedure is mostly focused on the change management culture that requires high level of planning, organizing, modifying, and controlling in order to benefit from strengths as well as revoke weaknesses.

Optimal Dynamic Economic Load Dispatch Using Artificial Immune System

The dynamic economic dispatch (DED) problem is one of the complex constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand.  Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.

Effect of Incremental Forming Parameters on Titanium Alloys Properties

Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the microhardness at higher straining due to recovery processes.

Life Estimation of Induction Motor Insulation under Non-Sinusoidal Voltage and Current Waveforms Using Fuzzy Logic

Thyristor based firing angle controlled voltage regulators are extensively used for speed control of single phase induction motors. This leads to power saving but the applied voltage and current waveforms become non-sinusoidal. These non-sinusoidal waveforms increase voltage and thermal stresses which result into accelerated insulation aging, thus reducing the motor life. Life models that allow predicting the capability of insulation under such multi-stress situations tend to be very complex and somewhat impractical. This paper presents the fuzzy logic application to investigate the synergic effect of voltage and thermal stresses on intrinsic aging of induction motor insulation. A fuzzy expert system is developed to estimate the life of induction motor insulation under multiple stresses. Three insulation degradation parameters, viz. peak modification factor, wave shape modification factor and thermal loss are experimentally obtained for different firing angles. Fuzzy expert system consists of fuzzyfication of the insulation degradation parameters, algorithms based on inverse power law to estimate the life and defuzzyficaton process to output the life. An electro-thermal life model is developed from the results of fuzzy expert system. This fuzzy logic based electro-thermal life model can be used for life estimation of induction motors operated with non-sinusoidal voltage and current waveforms.

Effect of Different Moisture States of Surface-Treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete

This study examined the properties of fresh and hardened concretes as influenced by the moisture state of the coarse recycled concrete aggregates (RCA) after surface treatment. Surface treatment was performed by immersing the coarse RCA in a calcium metasilicate (CM) solution. The treated coarse RCA was maintained in three controlled moisture states, namely, air-dried, oven-dried, and saturated surface-dried (SSD), prior to its use in a concrete mix. The physical properties of coarse RCA were evaluated after surface treatment during the first phase of the experiment to determine the density and the water absorption characteristics of the RCA. The second phase involved the evaluation of the slump, slump loss, density, and compressive strength of the concretes that were prepared with different proportions of natural and treated coarse RCA. Controlling the moisture state of the coarse RCA after surface treatment was found to significantly influence the properties of the fresh and hardened concretes. 

A Framework for Successful TQM Implementation and Its Effect on the Organizational Sustainability Development

The main purpose of this research is to construct a generic model for successful implementation of Total Quality Management (TQM) in Oil sector, and to find out the effects of this model on the organizational sustainability development (OSD) performance of Libyan oil and gas companies using the structured equation modeling (SEM) approach. The research approach covers both quantitative and qualitative methods. A questionnaire was developed in order to identify the quality factors that are seen by Libyan oil and gas companies to be critical to the success of TQM implementation. Hypotheses were developed to evaluate the impact of TQM implementation on O SD. Data analysis reveals that there is a significant positive effect of the TQM implementation on OSD. 24 quality factors are found to be critical and absolutely essential for successful TQM implementation. The results generated a structure of the TQMSD implementation framework based on the four major road map constructs (Top management commitment, employee involvement and participation, customer-driven processes, and continuous improvement culture).

A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Wetting-Drying Cycles Effect on Piles Embedded in a Very High Expansive Soil

The behavior of model piles embedded in a very high expansive soil was investigated, a specially manufactured saturation-drying tank was used to apply three cycles of wetting and drying to the expansive soil surrounding the model straight shaft and under reamed piles, the relative movement of the piles with respect to the soil surface was recorded with time, also the exerted uplift pressure of the piles due to soil swelling was recorded. The behavior of unloaded straight shaft and under reamed piles was investigated. Two design charts were presented for straight shaft and under reamed piles one for the required pile depth for zero upward movement due to soil swelling, while the other for the required pile depth to exert zero uplift pressure when the soil swells. Under reamed piles showed a decrease in upward movement of 20% to 30%, and an uplift pressure decrease of 10% to 30%.