A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition

A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.

Effect of Friction Stir Welding on Microstructural and Mechanical Properties of Copper Alloy

This study demonstrates the feasibility of joining the commercial pure copper plates by friction stir welding (FSW). Microstructure, microhardness and tensile properties in terms of the joint efficiency were found 94.03 % compare to as receive base material (BM). The average hardness at the top was higher than bottom. Hardness of weld zone was higher than the base material. Different microstructure zones were revealed by optical microscopy and scanning electron microscopy. The stirred zone (SZ) exhibited primary two phases namely, recrystallized grains and fine precipitates in matrix of copper.

Secret Communications Using Synchronized Sixth-Order Chuas's Circuits

In this paper, we use Generalized Hamiltonian systems approach to synchronize a modified sixth-order Chua's circuit, which generates hyperchaotic dynamics. Synchronization is obtained between the master and slave dynamics with the slave being given by an observer. We apply this approach to transmit private information (analog and binary), while the encoding remains potentially secure.

Analysis of Take-off Phase of Somersaults with Twisting along the Longitudinal Body Axis

The contribution deals with problem of take-off phase of back somersault with twisting with various numbers of twists along longitudinal body axis. The aim was to evaluate the changes in angles during transition phase from back handspring to back somersault using 3D kinematic analysis of the somersaults. We used Simi Motion System for the 3D kinematic analysis of the observed gymnastic element performed by Czech Republic female representative and 2008 Summer Olympic Games participant. The results showed that the higher the number of twists, the smaller the touchdown angle in which the gymnasts lands on the pad in the beginning of take-off phase. In back somersault with one twist (180°) the average angle is 54°, in 1080° back somersault the average angle is 45.9°. These results may help to improve technical training of sports gymnasts.

Use Cuticular Hydrocarbons as Chemotaxonomic of The Pamphagidae Pamphagus elephas (Insecta, Orthoptera) of Algeria

The cuticular hydrocarbons of Pamphagus elephas (Orthoptera: Pamphagidae) has been analysed by gas chromatography and by combined gas chromatograph-mass spectrometry. The following hydrocarbon classes have been identified in insect cuticular hydrocarbons are: n-alkanes and methylalkanes comprising Monomethyl-, dimethyl-and trimethylalkanes. Sexual dimorphism is observed in long chain alkanes (C24-C36) present on male and female. The cuticulars hydrocarbons of P.elephas ranged from 24 to 36 carbons and incluted n-alkanes, Dimethylalkanes and Trimethylalkanes. nalkanes represented by (C24-C36,72,7% on male and 79,2% on female), internally branched Monomethylalkanes identified were (C25, C30-C32,C35-C37;11% on male and 9,4% on female), Dimethylalkanes detected are (C31-C32, C36; 2,2% on male and 2,06% on female) and Trimethylalkanes detected are (C32, C36; 3,1% on male and 4, 97 on female). Larvae male and female (stage 7) showed the same quality of n-alkanes observed in adults. However a difference quantity is noted.

In Silico Analysis of Quinoxaline Ligand Conformations on 1ZIP: Adenylate Kinase

Adenylate kinase (AK) catalyse the phosphotransferase reaction plays an important role in cellular energy homeostasis. The inhibitors of bacterial AK are useful in the treatment of several bacterial infections. To the novel inhibitors of AK, docking studies performed by using the 3D structure of Bacillus stearothermophilus adenylate kinase from protein data bank (IZIP). 46 Quinoxaline analogues were docked in 1ZIP and selected the highly interacting compounds based on their binding energies, for further studies

Application of a Novel Audio Compression Scheme in Automatic Music Recommendation, Digital Rights Management and Audio Fingerprinting

Rapid progress in audio compression technology has contributed to the explosive growth of music available in digital form today. In a reversal of ideas, this work makes use of a recently proposed efficient audio compression scheme to develop three important applications in the context of Music Information Retrieval (MIR) for the effective manipulation of large music databases, namely automatic music recommendation (AMR), digital rights management (DRM) and audio finger-printing for song identification. The performance of these three applications has been evaluated with respect to a database of songs collected from a diverse set of genres.

The Innovative Information System for Systemic Approach of the Sustainability in the Enterprise

This paper presents an innovative computer system that contributes to sustainable development of the enterprise. The research refers to a rethinking of traditional systems of collaboration and risk assessment, present in any organization, leading to a sustainable enterprise. This concept integrates emerging tools that allow the implementation and exploitation of the collective intelligence of the enterprise, allowing the exchange of contextual, agile and simplified information, and collaboration with networks of customers and partners in an environment where risks are controlled. Risk assessment is done in a systemic way: the enterprise as the system compared to the contained departments and the enterprise as a subsystem compared to: families of international standards and sustainability-s responsibilities. The enterprise, in this systemic vision, responds to the requirements that any existing system to operate continuously in an indefinite future without reaching key resource depletion. The research is done by integrating collaborative science, engineering, management, psychology, obtaining thus a cornerstone of sustainable development of the enterprise.

Adaptive Non-linear Filtering Technique for Image Restoration

Removing noise from the any processed images is very important. Noise should be removed in such a way that important information of image should be preserved. A decisionbased nonlinear algorithm for elimination of band lines, drop lines, mark, band lost and impulses in images is presented in this paper. The algorithm performs two simultaneous operations, namely, detection of corrupted pixels and evaluation of new pixels for replacing the corrupted pixels. Removal of these artifacts is achieved without damaging edges and details. However, the restricted window size renders median operation less effective whenever noise is excessive in that case the proposed algorithm automatically switches to mean filtering. The performance of the algorithm is analyzed in terms of Mean Square Error [MSE], Peak-Signal-to-Noise Ratio [PSNR], Signal-to-Noise Ratio Improved [SNRI], Percentage Of Noise Attenuated [PONA], and Percentage Of Spoiled Pixels [POSP]. This is compared with standard algorithms already in use and improved performance of the proposed algorithm is presented. The advantage of the proposed algorithm is that a single algorithm can replace several independent algorithms which are required for removal of different artifacts.

Fuzzy Processing of Uncertain Data

In practice, we often come across situations where it is necessary to make decisions based on incomplete or uncertain data. In control systems it may be due to the unknown exact mathematical model, or its excessive complexity (e.g. nonlinearity) when it is necessary to simplify it, respectively, to solve it using a rule base. In the case of databases, searching data we compare a similarity measure with of the requirements of the selection with stored data, where both the select query and the data itself may contain vague terms, for example in the form of linguistic qualifiers. In this paper, we focus on the processing of uncertain data in databases and demonstrate it on the example multi-criteria decision making in the selection of variants, specified by higher number of technical parameters.

Effectiveness of Cellular Phone with Active RFID Tag for Evacuation - The Case of Evacuation from the Underground Shopping Mall of Tenjin

The underground shopping mall has the constructional problem of the fire evacuation. Also, the people sometimes lose their direction and information of current time in the mall. If the emergencies such as terrorist explosions or gas explosions are happened, they have to go out soon. Under such circumstances, inside of the mall has high risk for life. In this research, the authors propose a way that he/she can go out from the underground shopping mall quickly. If the narrow exits are discovered by using active RFID (Radio Frequency Identification) tags and using cellular phones, they can evacuate as soon as possible. To verify this hypothesis, the authors design the model and carry out the agent-based simulation. They treat, as a case study, the Tenjin mall in Fukuoka Prefecture in Japan. The result of the simulation is that the case of the pedestrian with using active RFID tags and cellular phones reduced the amount of time to spend on the evacuation. Even if the diffusion of RFID tags and cellular phones was not perfect, they could show the effectiveness of reducing the time of evacuation.

Surface Defects Detection for Ceramic Tiles UsingImage Processing and Morphological Techniques

Quality control in ceramic tile manufacturing is hard, labor intensive and it is performed in a harsh industrial environment with noise, extreme temperature and humidity. It can be divided into color analysis, dimension verification, and surface defect detection, which is the main purpose of our work. Defects detection is still based on the judgment of human operators while most of the other manufacturing activities are automated so, our work is a quality control enhancement by integrating a visual control stage using image processing and morphological operation techniques before the packing operation to improve the homogeneity of batches received by final users.

Anticipating Action Decisions of Automated Guided Vehicle in an Autonomous Decentralized Flexible Manufacturing System

Nowadays the market for industrial companies is becoming more and more globalized and highly competitive, forcing them to shorten the duration of the manufacturing system development time in order to reduce the time to market. In order to achieve this target, the hierarchical systems used in previous manufacturing systems are not enough because they cannot deal effectively with unexpected situations. To achieve flexibility in manufacturing systems, the concept of an Autonomous Decentralized Flexible Manufacturing System (AD-FMS) is useful. In this paper, we introduce a hypothetical reasoning based algorithm called the Algorithm for Future Anticipative Reasoning (AFAR) which is able to decide on a conceivable next action of an Automated Guided Vehicle (AGV) that works autonomously in the AD-FMS.

A Force-directed Graph Drawing based on the Hierarchical Individual Timestep Method

In this paper, we propose a fast and efficient method for drawing very large-scale graph data. The conventional force-directed method proposed by Fruchterman and Rheingold (FR method) is well-known. It defines repulsive forces between every pair of nodes and attractive forces between connected nodes on a edge and calculates corresponding potential energy. An optimal layout is obtained by iteratively updating node positions to minimize the potential energy. Here, the positions of the nodes are updated every global timestep at the same time. In the proposed method, each node has its own individual time and time step, and nodes are updated at different frequencies depending on the local situation. The proposed method is inspired by the hierarchical individual time step method used for the high accuracy calculations for dense particle fields such as star clusters in astrophysical dynamics. Experiments show that the proposed method outperforms the original FR method in both speed and accuracy. We implement the proposed method on the MDGRAPE-3 PCI-X special purpose parallel computer and realize a speed enhancement of several hundred times.

Production of Milk Clotting Protease by Rhizopus Stolonifer through Optimization of Culture Conditions

The present study describes the biosynthesis of a milkclotting protease by solid state fermentation (SSF) of a locally isolated mould, Rhizopus stolonifer. The production medium was prepared using wheat bran at 50% (w/v). The production conditions are optimized by varying 7 parameters: carbon and nitrogen sources, medium moisture, temperature, pH, fermentation time and inoculum-s size. The maximum enzyme synthesis was measured after 96 h of incubation time at temperature of 28°C. The optimum pH determined was 6 and the inoculum size was 3.106spores/ml. The optimum initial moisture content is comprised between 50 to 70%. The formation of milk clotting protease is enhanced when galactose and peptone are used at 10% (w/v) and 1% (w/v) concentrations respectively. The maximum production of milk clotting protease is 120 US/ml.

In situ Observation of the State and Stability of Hemoglobin Adsorbed onto Glass Surface by Slab Optical Waveguide (SOWG) Spectroscopy

The state and stability of hemoglobin adsorbed on the glass surface was investigated using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was same as that of the hemoglobin in solution. This result suggests that no significant denaturation occurred by adsorption. The adsorption of hemoglobin is relatively strong that the hemoglobin molecules even remained adsorbed after rinsing the cell with buffer solution. The peak shift caused by the reduction of adsorbed hemoglobin was also observed.

Optimized Multiplier Based upon 6-Input Luts and Vedic Mathematics

A new approach has been used for optimized design of multipliers based upon the concepts of Vedic mathematics. The design has been targeted to state-of-the art field-programmable gate arrays (FPGAs). The multiplier generates partial products using Vedic mathematics method by employing basic 4x4 multipliers designed by exploiting 6-input LUTs and multiplexers in the same slices resulting in drastic reduction in area. The multiplier is realized on Xilinx FPGAs using devices Virtex-5 and Virtex-6.Carry Chain Adder was employed to obtain final products. The performance of the proposed multiplier was examined and compared to well-known multipliers such as Booth, Carry Save, Carry ripple, and array multipliers. It is demonstrated that the proposed multiplier is superior in terms of speed as well as power consumption.