Experimental teaching, Perceived usefulness, Ease of use, Learning Interest and Science Achievement of Taiwan 8th Graders in TIMSS 2007 Database

the data of Taiwanese 8th grader in the 4th cycle of Trends in International Mathematics and Science Study (TIMSS) are analyzed to examine the influence of the science teachers- preference in experimental teaching on the relationships between the affective variables ( the perceived usefulness of science, ease of using science and science learning interest) and the academic achievement in science. After dealing with the missing data, 3711 students and 145 science teacher-s data were analyzed through a Hierarchical Linear Modeling technique. The major objective of this study was to determine the role of the experimental teaching moderates the relationship between perceived usefulness and achievement.

Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification

The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.

Arc Length of Rational Bezier Curves and Use for CAD Reparametrization

The length  of a given rational B'ezier curve is efficiently estimated. Since a rational B'ezier function is nonlinear, it is usually impossible to evaluate its length exactly. The length is approximated by using subdivision and the accuracy of the approximation n is investigated. In order to improve the efficiency, adaptivity is used with some length estimator. A rigorous theoretical analysis of the rate of convergence of n to  is given. The required number of subdivisions to attain a prescribed accuracy is also analyzed. An application to CAD parametrization is briefly described. Numerical results are reported to supplement the theory.

Multi-matrix Real-coded Genetic Algorithm for Minimising Total Costs in Logistics Chain Network

The importance of supply chain and logistics management has been widely recognised. Effective management of the supply chain can reduce costs and lead times and improve responsiveness to changing customer demands. This paper proposes a multi-matrix real-coded Generic Algorithm (MRGA) based optimisation tool that minimises total costs associated within supply chain logistics. According to finite capacity constraints of all parties within the chain, Genetic Algorithm (GA) often produces infeasible chromosomes during initialisation and evolution processes. In the proposed algorithm, chromosome initialisation procedure, crossover and mutation operations that always guarantee feasible solutions were embedded. The proposed algorithm was tested using three sizes of benchmarking dataset of logistic chain network, which are typical of those faced by most global manufacturing companies. A half fractional factorial design was carried out to investigate the influence of alternative crossover and mutation operators by varying GA parameters. The analysis of experimental results suggested that the quality of solutions obtained is sensitive to the ways in which the genetic parameters and operators are set.

Knowledge Based Wear Particle Analysis

The paper describes a knowledge based system for analysis of microscopic wear particles. Wear particles contained in lubricating oil carry important information concerning machine condition, in particular the state of wear. Experts (Tribologists) in the field extract this information to monitor the operation of the machine and ensure safety, efficiency, quality, productivity, and economy of operation. This procedure is not always objective and it can also be expensive. The aim is to classify these particles according to their morphological attributes of size, shape, edge detail, thickness ratio, color, and texture, and by using this classification thereby predict wear failure modes in engines and other machinery. The attribute knowledge links human expertise to the devised Knowledge Based Wear Particle Analysis System (KBWPAS). The system provides an automated and systematic approach to wear particle identification which is linked directly to wear processes and modes that occur in machinery. This brings consistency in wear judgment prediction which leads to standardization and also less dependence on Tribologists.

Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing the evolution strategies (ES) for avoiding particle impoverishment. The 3D natural point landmarks are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree in the time cost of O(log2 N). Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches.

Cultural Aspects Analyses in Sustainable Architecture

Social ideology, cultural values and principles shaping environment are inferred by environment and structural characteristics of construction site. In other words, this inference manifestation also indicates ideology and culture of its foundation and also applies its principles and values and somehow plays an important role in Cultural Revolution. All human behaviors and artifacts are affected and being influenced by culture. Culture is not abstract concept, it is a spiritual domain that an individual and society grow and develop in it. Social behaviors are affected by environmental comprehension, so the architecture work influences on its audience and it is the environment that fosters social behaviors. Indeed, sustainable architecture should be considered as background of culture for establishing optimal sustainable culture. Since unidentified architecture roots in cultural non identity and abnormalities, so the society possesses identity characteristics and life and as a consequence, the society and architecture are changed by transformation of life style. This article aims to investigate the interaction of architecture, society, environment and sustainable architecture formation in its cultural basis and analyzes the results approaching behavior and sustainable culture in recent era.

Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network

In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.

A method for Music Classification Based On Perceived Mood Detection for Indian Bollywood Music

A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the "perceived mood" or the "emotions" related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information could also be helpful in better classification of the music database. In this paper we have presented a method to classify music not just based on the meta-data of the audio clip but also include the "mood" factor to help improve the music classification. We propose an automated and efficient way of classifying music samples based on the mood detection from the audio data. We in particular try to classify the music based on mood for Indian bollywood music. The proposed method tries to address the following problem statement: Genre information (usually part of the audio meta-data) alone does not help in better music classification. For example the acoustic version of the song "nothing else matters by Metallica" can be classified as melody music and thereby a person in relaxing or chill out mood might want to listen to this track. But more often than not this track is associated with metal / heavy rock genre and if a listener classified his play-list based on the genre information alone for his current mood, the user shall miss out on listening to this track. Currently methods exist to detect mood in western or similar kind of music. Our paper tries to solve the issue for Indian bollywood music from an Indian cultural context

Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet

In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection.

Combinatorial Approach to Reliability Evaluation of Network with Unreliable Nodes and Unreliable Edges

Estimating the reliability of a computer network has been a subject of great interest. It is a well known fact that this problem is NP-hard. In this paper we present a very efficient combinatorial approach for Monte Carlo reliability estimation of a network with unreliable nodes and unreliable edges. Its core is the computation of some network combinatorial invariants. These invariants, once computed, directly provide pure and simple framework for computation of network reliability. As a specific case of this approach we obtain tight lower and upper bounds for distributed network reliability (the so called residual connectedness reliability). We also present some simulation results.

Simulation of Tracking Time Delay Algorithm using Mathcad Package

This paper deals with tracking and estimating time delay between two signals. The simulation of this algorithm accomplished by using Mathcad package is carried out. The algorithm we will present adaptively controls and tracking the delay, so as to minimize the mean square of this error. Thus the algorithm in this case has task not only of seeking the minimum point of error but also of tracking the change of position, leading to a significant improving of performance. The flowchart of the algorithm is presented as well as several tests of different cases are carried out.

Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks

The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.

Re-Engineering the Human: New Reproductive Technologies and the Specter of Frankenstein

The virulent debates that have dogged research on, and the diffusion of, a wide range of technologies indicate a growing loss of confidence in what we might call, the techno-scientific endeavour to reshape the world. Utopian images of a world rendered ever more amenable to human desires are now closely shadowed by just as compelling dystopian visions of monstrosity and disaster that are nevertheless constructed from the same cultural material. The paper uses the case of the debates over developments in reproductive technology to offer some observations on the ways in which such technologies routinely become enmirred in cultural ambivalence.

Unconstrained Arabic Online Handwritten Words Segmentation using New HMM State Design

In this paper we propose a segmentation system for unconstrained Arabic online handwriting. An essential problem addressed by analytical-based word recognition system. The system is composed of two-stages the first is a newly special designed hidden Markov model (HMM) and the second is a rules based stage. In our system, handwritten words are broken up into characters by simultaneous segmentation-recognition using HMMs of unique design trained using online features most of which are novel. The HMM output characters boundaries represent the proposed segmentation points (PSP) which are then validated by rules-based post stage without any contextual information help to solve different segmentation errors. The HMM has been designed and tested using a self collected dataset (OHASD) [1]. Most errors cases are cured and remarkable segmentation enhancement is achieved. Very promising word and character segmentation rates are obtained regarding the unconstrained Arabic handwriting difficulty and not using context help.

Small and Medium Enterprises (SMEs) Financing Practice and Accessing Bank Loan Issues -The Case of Libya

The purpose of this paper is to examine the financing practices of SMEs in Libya in two different phases of business life cycle: start-up and matured stages. Moreover, SMEs- accessing bank loan issues is also identified. The study was conducted by taking into account the aspect of demand. The findings are based on a sample of 76 SMEs in Libya through the adoption of questionnaires. The results have pinpointed several things- evidently, SMEs use informal financing sources which prefer personal savings; SME owners are willing to apply for bank loan, that the most pressing problem has been identified, not to apply bank loan is loan with interest (religion factor).

Development of a Novel Pneumatic Hybrid Engine

Although electrical motors are still the main devices used in vehicular exhaust comprises more than 95 percent of the air pollution in Taiwan's largest city, Taipei. On average, all commuters in Taipei travel 13.6 km daily, while motorcycle commuters travel 12.2 km. The convenience and mobility of motorcycles makes them irreplaceable in Taiwan city traffic but they add significantly to air pollution problems. In order to improve air pollution conditions, some new types of vehicles have been proposed, such as fuel cell driven and hybrid energy vehicles. In this study, we develop a model pneumatic hybrid motorcycle system and simulate its acceleration and mileage (km/L) performance. The results show that the pneumatic hybrid motorcycle can improve efficiency.

Use of Multiple Linear Regressions to Evaluate the Influence of O3 and PM10 on Biological Pollutants

Exposure to ambient air pollution has been linked to a number of health outcomes, starting from modest transient changes in the respiratory tract and impaired pulmonary function, continuing to restrict activity/reduce performance and to the increase emergency rooms visits, hospital admissions or mortality. The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, fungal spores and pollen. Considering the potential relevance of crossed effects of nonbiological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants (O3 and PM10) and meteorological parameters on the concentrations of pollen and fungal spores using multiple linear regressions. The data considered in this study were collected in Oporto which is the second largest Portuguese city, located in the North. Daily mean of O3, PM10, pollen and fungal spore concentrations, temperature, relative humidity, precipitation, wind velocity, pollen and fungal spore concentrations, for 2003, 2004 and 2005 were considered. Results showed that the 90th percentile of the adjusted coefficient of determination, P90 (R2aj), of the multiple regressions varied from 0.613 to 0.916 for pollen and from 0.275 to 0.512 for fungal spores. O3 and PM10 showed to have some influence on the biological pollutants. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations. Relative humidity also showed to have some influence on the fungal spore dispersion. Nevertheless, the models for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant can not be, even so, consistent enough.

Computational Simulation of Imploding Current Sheath Trajectory at the Radial Phase of Plasma Focus Performance

When the shock front (SF) hits the central electrode axis of plasma focus device, a reflected shock wave moves radially outwards. The current sheath (CS) results from ionization of filled gas between two electrodes continues to compress inwards until it hits the out-going reflected shock front. In this paper the Lagrangian equations are solved for a parabolic shock trajectory yielding a first and second approximation for the CS path. To determine the accuracy of the approximation, the same problem is solved for a straight shock.

Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists

We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.