Investigation and Comparison of Energy Intensity in Iranian Transportation Industry (Case Study Road Transportation Sector)

Energy intensity(energy consumption intensity) is a global index which computes the required energy for producing a specific value of goods and services in each country. It is computed in terms of initial energy supply or final energy consumption. In this study (research) Divisia method is used to decompose energy consumption and energy intensity. This method decomposes consumption and energy intensity to production effects, structural and net intensity and could be done as time series or two-periodical. This study analytically investigates consumption changes and energy intensity on economical sectors of Iran and more specific on road transportation(rail road and road).Our results show that the contribution of structural effect (change in economical activities combination) is very low and the effect of net energy consumption has the higher contribution in consumption changes and energy intensity. In other words, the high consumption of energy is due to Intensity of energy consumption and is not to structural effect of transportation sector.

Segmentation of Lungs from CT Scan Images for Early Diagnosis of Lung Cancer

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. The CAD (Computer Aided Diagnosis ) of lung CT generally first segment the area of interest (lung) and then analyze the separately obtained area for nodule detection in order to diagnosis the disease. For normal lung, segmentation can be performed by making use of excellent contrast between air and surrounding tissues. However this approach fails when lung is affected by high density pathology. Dense pathologies are present in approximately a fifth of clinical scans, and for computer analysis such as detection and quantification of abnormal areas it is vital that the entire and perfectly lung part of the image is provided and no part, as present in the original image be eradicated. In this paper we have proposed a lung segmentation technique which accurately segment the lung parenchyma from lung CT Scan images. The algorithm was tested against the 25 datasets of different patients received from Ackron Univeristy, USA and AGA Khan Medical University, Karachi, Pakistan.

Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

The Calculation of Electromagnetic Fields (EMF) in Substations of Shopping Centers

In nature, electromagnetic fields always appear like atmosphere static electric field, the earth's static magnetic field and the wide-rang frequency electromagnetic field caused by lightening. However, besides natural electromagnetic fields (EMF), today human beings are mostly exposed to artificial electromagnetic fields due to technology progress and outspread use of electrical devices. To evaluate nuisance of EMF, it is necessary to know field intensity for every frequency which appears and compare it with allowed values. Low frequency EMF-s around transmission and distribution lines are time-varying quasi-static electromagnetic fields which have conservative component of low frequency electrical field caused by charges and eddy component of low frequency magnetic field caused by currents. Displacement current or field delay are negligible, so energy flow in quasi-static EMF involves diffusion, analog like heat transfer. Electrical and magnetic field can be analyzed separately. This paper analysis the numerical calculations in ELF-400 software of EMF in distribution substation in shopping center. Analyzing the results it is possible to specify locations exposed to the fields and give useful suggestion to eliminate electromagnetic effect or reduce it on acceptable level within the non-ionizing radiation norms and norms of protection from EMF.

The Water Quantity and Quality for Conjunctive Use in Saline Soil Problem Area

The aim of research project is to evaluate quantity and quality for conjunctive use of groundwater and surface water in lower in the Lower Nam Kam area, Thailand, even though there have been hints of saline soil and water. The mathematical model named WUSMO and MIKE Basin were applied for the calculation of crop water utilization. Results of the study showed that, in irrigation command area, water consumption rely on various sources; rain water 21.56%, irrigation water 78.29%, groundwater and some small surface storage 0.15%. Meanwhile, for non-irrigation command area, water consumption depends on the Nam Kam and Nambang stream 42%, rain water 36.75% and groundwater and some small surface storage 19.18%. Samples of surface water and groundwater were collected for 2 seasons. The criterion was determined for the assessment of suitable water for irrigation. It was found that this area has very limited sources of suitable water for irrigation.

Application of Biometrics to Obtain High Entropy Cryptographic Keys

In this paper, a two factor scheme is proposed to generate cryptographic keys directly from biometric data, which unlike passwords, are strongly bound to the user. Hash value of the reference iris code is used as a cryptographic key and its length depends only on the hash function, being independent of any other parameter. The entropy of such keys is 94 bits, which is much higher than any other comparable system. The most important and distinct feature of this scheme is that it regenerates the reference iris code by providing a genuine iris sample and the correct user password. Since iris codes obtained from two images of the same eye are not exactly the same, error correcting codes (Hadamard code and Reed-Solomon code) are used to deal with the variability. The scheme proposed here can be used to provide keys for a cryptographic system and/or for user authentication. The performance of this system is evaluated on two publicly available databases for iris biometrics namely CBS and ICE databases. The operating point of the system (values of False Acceptance Rate (FAR) and False Rejection Rate (FRR)) can be set by properly selecting the error correction capacity (ts) of the Reed- Solomon codes, e.g., on the ICE database, at ts = 15, FAR is 0.096% and FRR is 0.76%.

The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Benchmarking: Performance on ALPS and Formosa Clusters

This paper presents the benchmarking results and performance evaluation of differentclustersbuilt atthe National Center for High-Performance Computingin Taiwan. Performance of processor, memory subsystem andinterconnect is a critical factor in the overall performance of high performance computing platforms. The evaluation compares different system architecture and software platforms. Most supercomputer used HPL to benchmark their system performance, in accordance with the requirement of the TOP500 List. In this paper we consider system memory access factors that affect benchmark performance, such as processor and memory performance.We hope these works will provide useful information for future development and construct cluster system.

Carbon Isotope Discrimination, A Tool for Screening of Salinity Tolerance of Genotypes

This study carried out in order to investigate the effects of salinity on carbon isotope discrimination (Δ) of shoots and roots of four sugar beet cultivars (cv) including Madison (British origin) and three Iranian culivars (7233-P12, 7233-P21 and 7233-P29). Plants were grown in sand culture medium in greenhouse conditions. Plants irrigated with saline water (tap water as control, 50 mM, 150 mM, 250 mM and 350 mM of NaCl + CaCl2 in 5 to 1 molar ratio) from 4 leaves stage for 16 weeks. Carbon isotope discrimination significantly decreased with increasing salinity. Significant differences of Δ between shoot and root were observed in all cvs and all levels of salinity. Madison cv showed lower Δ in shoot and root than other three cvs at all levels of salinity expect control, but cv 7233-P29 had significantly higher Δ values at saline conditions of 150 mM and above. Therefore, Δ might be applicable, as a useful tool, for study of salinity tolerance of sugar beet genotypes.

Application of Hermite-Rodriguez Functions to Pulse Shaping Analog Filter Design

In this paper, we consider the design of pulse shaping filter using orthogonal Hermite-Rodriguez basis functions. The pulse shaping filter design problem has been formulated and solved as a quadratic programming problem with linear inequality constraints. Compared with the existing approaches reported in the literature, the use of Hermite-Rodriguez functions offers an effective alternative to solve the constrained filter synthesis problem. This is demonstrated through a numerical example which is concerned with the design of an equalization filter for a digital transmission channel.

Localizing and Recognizing Integral Pitches of Cheque Document Images

Automatic reading of handwritten cheque is a computationally complex process and it plays an important role in financial risk management. Machine vision and learning provide a viable solution to this problem. Research effort has mostly been focused on recognizing diverse pitches of cheques and demand drafts with an identical outline. However most of these methods employ templatematching to localize the pitches and such schemes could potentially fail when applied to different types of outline maintained by the bank. In this paper, the so-called outline problem is resolved by a cheque information tree (CIT), which generalizes the localizing method to extract active-region-of-entities. In addition, the weight based density plot (WBDP) is performed to isolate text entities and read complete pitches. Recognition is based on texture features using neural classifiers. Legal amount is subsequently recognized by both texture and perceptual features. A post-processing phase is invoked to detect the incorrect readings by Type-2 grammar using the Turing machine. The performance of the proposed system was evaluated using cheque and demand drafts of 22 different banks. The test data consists of a collection of 1540 leafs obtained from 10 different account holders from each bank. Results show that this approach can easily be deployed without significant design amendments.

Thermal Load Calculations of Multilayered Walls

Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal weather conditions, within the Libyan cost region during summer and winter, measured thermal conductivity values were used to implement such seasonal variation of heat flow and the temperature variations through the walls. The experimental measured thermal conductivity values were obtained using the Hot Disk technique. The estimation of the thermal resistance of the wall layers ( R-values) is based on measurements and calculations. The numerical calculations were done using a simplified analytical model that considers two different wall constructions which are characteristics of such houses. According to the obtained results, the R-values were quite low and therefore, several suggestions have been proposed to improve the thermal loading performance that will lead to a reasonable human comfort and reduce energy consumption.

Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Catalytical Effect of Fluka 05120 on Methane Decomposition

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Effect of Temperature on Specific Retention Volumes of Selected Volatile Organic Compounds Using the Gas - Liquid Chromatographic Technique Revisited

This paper is a continuation of our interest in the influence of temperature on specific retention volumes and the resulting infinite dilution activity coefficients. This has a direct effect in the design of absorption and stripping columns for the abatement of volatile organic compounds. The interaction of 13 volatile organic compounds (VOCs) with polydimethylsiloxane (PDMS) at varying temperatures was studied by gas liquid chromatography (GLC). Infinite dilution activity coefficients and specific retention volumes obtained in this study were found to be in agreement with those obtained from static headspace and group contribution methods by the authors as well as literature values for similar systems. Temperature variation also allows for transport calculations for different seasons. The results of this work confirm that PDMS is well suited for the scrubbing of VOCs from waste gas streams. Plots of specific retention volumes against temperature gave linear van-t Hoff plots.

Accelerating Integer Neural Networks On Low Cost DSPs

In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.

Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Economical Operation of Hydro-Thermal Power System based on Multi-path Adaptive Tabu Search

An economic operation scheduling problem of a hydro-thermal power generation system has been properly solved by the proposed multipath adaptive tabu search algorithm (MATS). Four reservoirs with their own hydro plants and another one thermal plant are integrated to be a studied system used to formulate the objective function under complicated constraints, eg water managements, power balance and thermal generator limits. MATS with four subsearch units (ATSs) and two stages of discarding mechanism (DM), has been setting and trying to solve the problem through 25 trials under function evaluation criterion. It is shown that MATS can provide superior results with respect to single ATS and other previous methods, genetic algorithms (GA) and differential evolution (DE).

Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter

Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.