The Ethics of Instream Flows: Science and Policy in Southern Alberta, Canada

Securing instream flows for aquatic ecosystems is critical for sustainable water management and the promotion of human and environmental health. Using a case study from the semiarid region of southern Alberta (Canada) this paper considers how the determination of instream flow standards requires judgments with respect to: (1) The relationship between instream flow indicators and assessments of overall environmental health; (2) The indicators used to determine adequate instream flows, and; (3) The assumptions underlying efforts to model instream flows given data constraints. It argues that judgments in each of these areas have an inherently ethical component because instream flows have direct effects on the water(s) available to meet obligations to humans and non-humans. The conclusion expands from the case study to generic issues regarding instream flows, the growing water ethics literature and prospects for linking science to policy.

Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Numerical Simulation for the Formability Prediction of the Laser Welded Blanks (TWB)

Tailor-welded Blanks (TWBs) are tailor made for different complex component designs by welding multiple metal sheets with different thicknesses, shapes, coatings or strengths prior to forming. In this study the Hemispherical Die Stretching (HDS) test (out-of-plane stretching) of TWBs were simulated via ABAQUS/Explicit to obtain the Forming Limit Diagrams (FLDs) of Stainless steel (AISI 304) laser welded blanks with different thicknesses. Two criteria were used to detect the start of necking to determine the FLD for TWBs and parent sheet metals. These two criteria are the second derivatives of the major and thickness strains that are given from the strain history of simulation. In the other word, in these criteria necking starts when the second derivative of thickness or major strain reaches its maximum. With having the time of onset necking, one can measure the major and minor strains at the critical area and determine the forming limit curve.

Nanopaper Innovation in Paper and Packaging Industry

Nowadays due to globalization of economy and competition environment, innovation and technology plays key role at creation of wealth and economic growth of countries. In fact prompt growth of practical and technologic knowledge may results in social benefits for countries when changes into effective innovation. Considering the importance of innovation for the development of countries, this study addresses the radical technological innovation introduced by nanopapers at different stages of producing paper including stock preparation, using authorized additives, fillers and pigments, using retention, calender, stages of producing conductive paper, porous nanopaper and Layer by layer self-assembly. Research results show that in coming years the jungle related products will lose considerable portion of their market share, unless embracing radical innovation. Although incremental innovations can make this industry still competitive in mid-term, but to have economic growth and competitive advantage in long term, radical innovations are necessary. Radical innovations can lead to new products and materials which their applications in packaging industry can produce value added. However application of nanotechnology in this industry can be costly, it can be done in cooperation with other industries to make the maximum use of nanotechnology possible. Therefore this technology can be used in all the production process resulting in the mass production of simple and flexible papers with low cost and special properties such as facility at shape, form, easy transportation, light weight, recovery and recycle marketing abilities, and sealing. Improving the resistance of the packaging materials without reducing the performance of packaging materials enhances the quality and the value added of packaging. Improving the cellulose at nano scale can have considerable electron optical and magnetic effects leading to improvement in packaging and value added. Comparing to the specifications of thermoplastic products and ordinary papers, nanopapers show much better performance in terms of effective mechanical indexes such as the modulus of elasticity, tensile strength, and strain-stress. In densities lower than 640 kgm -3, due to the network structure of nanofibers and the balanced and randomized distribution of NFC in flat space, these specifications will even improve more. For nanopapers, strains are 1,4Gpa, 84Mpa and 17%, 13,3 Gpa, 214Mpa and 10% respectively. In layer by layer self assembly method (LbL) the tensile strength of nanopaper with Tio3 particles and Sio2 and halloysite clay nanotube are 30,4 ±7.6Nm/g and 13,6 ±0.8Nm/g and 14±0.3,3Nm/g respectively that fall within acceptable range of similar samples with virgin fiber. The usage of improved brightness and porosity index in nanopapers can create more competitive advantages at packaging industry.

Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Flexible Follower Response of a Translating Cam with Four Different Profiles for Rise-Dwell-Fall-Dwell motion

The flexible follower response of a translating cam with four different profiles for rise-dwell-fall-dwell (RDFD) motion is investigated. The cycloidal displacement motion, the modified sinusoidal acceleration motion, the modified trapezoidal acceleration motion, and the 3-4-5 polynomial motion are employed to describe the rise and the fall motions of the follower and the associated four kinds of cam profiles are studied. Since the follower flexibility is considered, the contact point of the roller and the cam is an unknown. Two geometric constraints formulated to restrain the unknown position are substituted into Hamilton-s principle with Lagrange multipliers. Applying the assumed mode method, one can obtain the governing equations of motion as non-linear differential-algebraic equations. The equations are solved using Runge-Kutta method. Then, the responses of the flexible follower undergoing the four different motions are investigated in time domain and in frequency domain.

Making Ends Meet: The Challenges of Investing in and Accounting for Sustainability

The transition to sustainable development requires considerable investments from stakeholders, both financial and immaterial. However, accounting for such investments often poses a challenge, as ventures with intangible or non-financial returns remain oblivious to conventional accounting techniques and risk assessment. That such investments may significantly contribute to the welfare of those affected may act as a driving force behind attempting to bridge this gap. This gains crucial importance as investments must be also backed by governments and administrations; entities whose budget depends on taxpayers- contributions and whose tasks are based on securing the welfare of their citizens. Besides economic welfare, citizens also require social and environmental wellbeing too. However, administrations must also safeguard that welfare is guaranteed not only to present, but to future generations too. With already strained budgets and the requirement of sustainable development, governments on all levels face the double challenge of making both of these ends meet.

Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).

In vitro Study of Antibacterial Activity of Cymbopogon citratus

Alcohol and water extracts of Cymbopogon citratus was investigated for anti-bacterial properties and phytochemical constituents. The extract was screened against four gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two grampositive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The antibacterial examination was by disc diffusion techniques, while the photochemical constituents were investigated using standard chemical methods. Results showed that the extracts inhibited the growth of standard and local strains of the organisms used. The treatments were significantly different (P = 0.05). The minimum inhibitory concentration of the extracts against the tested microorganisms ranged between 150mg/ml and 50mg/ml. The alcohol extracts were found to be generally more effective than the water extract. The photochemical analysis revealed the presence of alkaloids and phenol but absence of cardiac and cyanogenic glycosides. The presence of alkaloid and phenols were inferred as being responsible for the anti-bacterial properties of the extracts.

FPGA Based Longitudinal and Lateral Controller Implementation for a Small UAV

This paper presents implementation of attitude controller for a small UAV using field programmable gate array (FPGA). Due to the small size constrain a miniature more compact and computationally extensive; autopilot platform is needed for such systems. More over UAV autopilot has to deal with extremely adverse situations in the shortest possible time, while accomplishing its mission. FPGAs in the recent past have rendered themselves as fast, parallel, real time, processing devices in a compact size. This work utilizes this fact and implements different attitude controllers for a small UAV in FPGA, using its parallel processing capabilities. Attitude controller is designed in MATLAB/Simulink environment. The discrete version of this controller is implemented using pipelining followed by retiming, to reduce the critical path and thereby clock period of the controller datapath. Pipelined, retimed, parallel PID controller implementation is done using rapidprototyping and testing efficient development tool of “system generator", which has been developed by Xilinx for FPGA implementation. The improved timing performance enables the controller to react abruptly to any changes made to the attitudes of UAV.

Image Compression Using Multiwavelet and Multi-Stage Vector Quantization

The existing image coding standards generally degrades at low bit-rates because of the underlying block based Discrete Cosine Transform scheme. Over the past decade, the success of wavelets in solving many different problems has contributed to its unprecedented popularity. Due to implementation constraints scalar wavelets do not posses all the properties such as orthogonality, short support, linear phase symmetry, and a high order of approximation through vanishing moments simultaneously, which are very much essential for signal processing. New class of wavelets called 'Multiwavelets' which posses more than one scaling function overcomes this problem. This paper presents a new image coding scheme based on non linear approximation of multiwavelet coefficients along with multistage vector quantization. The performance of the proposed scheme is compared with the results obtained from scalar wavelets.

Modeling and Investigation of Volume Strain at Large Deformation under Uniaxial Cyclic Loading in Semi Crystalline Polymer

This study deals with the experimental investigation and theoretical modeling of Semi crystalline polymeric materials with a rubbery amorphous phase (HDPE) subjected to a uniaxial cyclic tests with various maximum strain levels, even at large deformation. Each cycle is loaded in tension up to certain maximum strain and then unloaded down to zero stress with N number of cycles. This work is focuses on the measure of the volume strain due to the phenomena of damage during this kind of tests. On the basis of thermodynamics of relaxation processes, a constitutive model for large strain deformation has been developed, taking into account the damage effect, to predict the complex elasto-viscoelastic-viscoplastic behavior of material. A direct comparison between the model predictions and the experimental data show that the model accurately captures the material response. The model is also capable of predicting the influence damage causing volume variation.

Grocery Customer Behavior Analysis using RFID-based Shopping Paths Data

Knowing about the customer behavior in a grocery has been a long-standing issue in the retailing industry. The advent of RFID has made it easier to collect moving data for an individual shopper's behavior. Most of the previous studies used the traditional statistical clustering technique to find the major characteristics of customer behavior, especially shopping path. However, in using the clustering technique, due to various spatial constraints in the store, standard clustering methods are not feasible because moving data such as the shopping path should be adjusted in advance of the analysis, which is time-consuming and causes data distortion. To alleviate this problem, we propose a new approach to spatial pattern clustering based on the longest common subsequence. Experimental results using real data obtained from a grocery confirm the good performance of the proposed method in finding the hot spot, dead spot and major path patterns of customer movements.

Implementation of Security Algorithms for u-Health Monitoring System

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.

A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities

Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.

Thermal Stability Boundary of FG Panel under Aerodynamic Load

In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.

An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

The Biomechanical Properties of the Different Modalities of Surgically Corrected Coarctation of the Aorta in Neonates and Infants

Biomechanical properties of infantile aorta in vitro in cases of different standard anastomoses: end-to-end (ETE), extended anastomosis end-to-end (EETE) and subclavian flap aortoplasty (SFA) used for surgical correction of coarctation were analyzed to detect the influence of the method on the biomechanics of infantile aorta and possible changes in haemodinamics. 10 specimens of native aorta, 3 specimens with ETE, 4 EEET and 3 SFA were investigated. The experiments showed a non-linear relationship between stress and strain in the infantile aorta, the modulus of elasticity of the aortic wall increased with the increase of inner pressure. In the case of anastomosis end-to-end the modulus was almost constant, relevant to the modulus of elasticity of the aorta with the inner pressure 100-120 mmHg. The anastomoses EETE and SFA showed elastic properties closer to native aorta, the stiffness of ETE did not change with the changes in inner pressure.