A Stable Pose Estimation Method for the Biped Robot using Image Information

This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.

Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression

In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.

Software Engineering Mobile Learning Software Solution Using Task Based Learning Approach

The development and use of mobile devices as well as its integration within education systems to deliver electronic contents and to support real-time communications was the focus of this research. In order to investigate the software engineering issues in using mobile devices a research on electronic content was initiated. The Developed MP3 mobile software solution was developed as a prototype for testing and developing a strategy for designing a usable m-learning environment. The mobile software solution was evaluated using mobile device using the link: http://projects.seeu.edu.mk/mlearn. The investigation also tested the correlation between the two mobile learning indicators: electronic content and attention, based on the Task Based learning instructional method. The mobile software solution ''M-Learn“ was developed as a prototype for testing the approach and developing a strategy for designing usable m-learning environment. The proposed methodology is about what learning modeling approach is more appropriate to use when developing mobile learning software.

Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Numerical Simulation of the Turbulent Flow over a Three-Dimensional Flat Roof

The flow field over a flat roof model building has been numerically investigated in order to determine threedimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data. Wind tunnel measurements and numerical predictions have been compared for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions. The proposed calculations have allowed the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a three-dimensional roof architecture dominated by flow separation.

Application of the Neural Network to the Synthesis of Multibeam Antennas Arrays

In this paper, we intend to study the synthesis of the multibeam arrays. The synthesis implementation-s method for this type of arrays permits to approach the appropriated radiance-s diagram. The used approach is based on neural network that are capable to model the multibeam arrays, consider predetermined general criteria-s, and finally it permits to predict the appropriated diagram from the neural model. Our main contribution in this paper is the extension of a synthesis model of these multibeam arrays.

Finite Volume Model to Study The Effect of Voltage Gated Ca2+ Channel on Cytosolic Calcium Advection Diffusion

Mathematical and computational modeling of calcium signalling in nerve cells has produced considerable insights into how the cells contracts with other cells under the variation of biophysical and physiological parameters. The modeling of calcium signaling in astrocytes has become more sophisticated. The modeling effort has provided insight to understand the cell contraction. Main objective of this work is to study the effect of voltage gated (Operated) calcium channel (VOC) on calcium profile in the form of advection diffusion equation. A mathematical model is developed in the form of advection diffusion equation for the calcium profile. The model incorporates the important physiological parameter like diffusion coefficient etc. Appropriate boundary conditions have been framed. Finite volume method is employed to solve the problem. A program has been developed using in MATLAB 7.5 for the entire problem and simulated on an AMD-Turion 32-bite machine to compute the numerical results.

A Quantitative Study on Japanese Internet User's Awareness to Information Security: Necessity and Importance of Education and Policy

In this paper, the authors examine whether or not there Institute for Information and Communications Policy shows are differences of Japanese Internet users awareness to information security based on individual attributes by using analysis of variance based on non-parametric method. As a result, generally speaking, it is found that Japanese Internet users' awareness to information security is different by individual attributes. Especially, the authors verify that the users who received the information security education would have rather higher recognition concerning countermeasures than other users including self-educated users. It is suggested that the information security education should be enhanced so that the users may appropriately take the information security countermeasures. In addition, the information security policy such as carrying out "e- net caravan" and "information security seminars" are effective in improving the users' awareness on the information security in Japan.

Bootstrap Confidence Intervals and Parameter Estimation for Zero Inflated Strict Arcsine Model

Zero inflated Strict Arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, maximum likelihood estimation method is used in estimating the parameters for zero inflated strict arcsine model. Bootstrapping is then employed to compute the confidence intervals for the estimated parameters.

Adaptive Group of Pictures Structure Based On the Positions of Video Cuts

In this paper we propose a method which improves the efficiency of video coding. Our method combines an adaptive GOP (group of pictures) structure and the shot cut detection. We have analyzed different approaches for shot cut detection with aim to choose the most appropriate one. The next step is to situate N frames to the positions of detected cuts during the process of video encoding. Finally the efficiency of the proposed method is confirmed by simulations and the obtained results are compared with fixed GOP structures of sizes 4, 8, 12, 16, 32, 64, 128 and GOP structure with length of entire video. Proposed method achieved the gain in bit rate from 0.37% to 50.59%, while providing PSNR (Peak Signal-to-Noise Ratio) gain from 1.33% to 0.26% in comparison to simulated fixed GOP structures.

An Energy Integration Approach on UHDE Ammonia Process

In this paper, the energy performance of a selected UHDE Ammonia plant is optimized by conducting heat integration through waste heat recovery and the synthesis of a heat exchange network (HEN). Minimum hot and cold utility requirements were estimated through IChemE spreadsheet. Supporting simulation was carried out using HYSYS software. The results showed that there is no need for heating utility while the required cold utility was found to be around 268,714 kW. Hence a threshold pinch case was faced. Then, the hot and cold streams were matched appropriately. Also, waste heat recovered resulted with savings in HP and LP steams of approximately 51.0% and 99.6%, respectively. An economic analysis on proposed HEN showed very attractive overall payback period not exceeding 3 years. In general, a net saving approaching 35% was achieved in implementing heat optimization of current studied UHDE Ammonia process.

Immunity of Integrated Drive System, Effects of Radiated and Conducted Emission

In this paper the problems associated with immunity of embedded systems used in Motor-Drive systems are investigated and appropriate solutions are presented. Integration of VSD motor systems (Integral Motor) while partially reducing some of these effects, adds to immunity problem of their embedded systems. Fail safe operation of an Integral Motor in arduous industrial environments is considered. In this paper an integral motor with a unique design is proposed to overcome critical issues such as heat, vibration and electromagnetic interference which are damaging to sensitive electronics without requirement of any additional cooling system. Advantages of the proposed Integral motor are compactness of combo motor and drive system with no external cabling/wiring. This motor provides a perfect shielding for least amount of radiated emission. It has an inbuilt filter for EMC compliance and has been designed to provide lower EMC noise for immunity of the internal electronics as well as the other neighbouring systems.

Face Recognition Using Double Dimension Reduction

In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.

Development of a Spark Electrode Ignition System for an Explosion Vessel

This paper presents development of an ignition system using spark electrodes for application in a research explosion vessel. A single spark is aimed to be discharged with quantifiable ignition energy. The spark electrode system would enable study of flame propagation, ignitability of fuel-air mixtures and other fundamental characteristics of flames. The principle of the capacitive spark circuit of ASTM is studied to charge an appropriate capacitance connected across the spark gap through a large resistor by a high voltage from the source of power supply until the initiation of spark. Different spark energies could be obtained mainly by varying the value of the capacitance and the supply current. The spark sizes produced are found to be affected by the spark gap, electrode size, input voltage and capacitance value.

An Approach of Quantum Steganography through Special SSCE Code

Encrypted messages sending frequently draws the attention of third parties, perhaps causing attempts to break and reveal the original messages. Steganography is introduced to hide the existence of the communication by concealing a secret message in an appropriate carrier like text, image, audio or video. Quantum steganography where the sender (Alice) embeds her steganographic information into the cover and sends it to the receiver (Bob) over a communication channel. Alice and Bob share an algorithm and hide quantum information in the cover. An eavesdropper (Eve) without access to the algorithm can-t find out the existence of the quantum message. In this paper, a text quantum steganography technique based on the use of indefinite articles (a) or (an) in conjunction with the nonspecific or non-particular nouns in English language and quantum gate truth table have been proposed. The authors also introduced a new code representation technique (SSCE - Secret Steganography Code for Embedding) at both ends in order to achieve high level of security. Before the embedding operation each character of the secret message has been converted to SSCE Value and then embeds to cover text. Finally stego text is formed and transmits to the receiver side. At the receiver side different reverse operation has been carried out to get back the original information.

Normalization Discriminant Independent Component Analysis

In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.

The Transfer of Energy Technologies in a Developing Country Context Towards Improved Practice from Past Successes and Failures

Technology transfer of renewable energy technologies is very often unsuccessful in the developing world. Aside from challenges that have social, economic, financial, institutional and environmental dimensions, technology transfer has generally been misunderstood, and largely seen as mere delivery of high tech equipment from developed to developing countries or within the developing world from R&D institutions to society. Technology transfer entails much more, including, but not limited to: entire systems and their component parts, know-how, goods and services, equipment, and organisational and managerial procedures. Means to facilitate the successful transfer of energy technologies, including the sharing of lessons are subsequently extremely important for developing countries as they grapple with increasing energy needs to sustain adequate economic growth and development. Improving the success of technology transfer is an ongoing process as more projects are implemented, new problems are encountered and new lessons are learnt. Renewable energy is also critical to improve the quality of lives of the majority of people in developing countries. In rural areas energy is primarily traditional biomass. The consumption activities typically occur in an inefficient manner, thus working against the notion of sustainable development. This paper explores the implementation of technology transfer in the developing world (sub-Saharan Africa). The focus is necessarily on RETs since most rural energy initiatives are RETs-based. Additionally, it aims to highlight some lessons drawn from the cited RE projects and identifies notable differences where energy technology transfer was judged to be successful. This is done through a literature review based on a selection of documented case studies which are judged against the definition provided for technology transfer. This paper also puts forth research recommendations that might contribute to improved technology transfer in the developing world. Key findings of this paper include: Technology transfer cannot be complete without satisfying pre-conditions such as: affordability, maintenance (and associated plans), knowledge and skills transfer, appropriate know how, ownership and commitment, ability to adapt technology, sound business principles such as financial viability and sustainability, project management, relevance and many others. It is also shown that lessons are learnt in both successful and unsuccessful projects.

Probability and Instruction Effects in Syllogistic Conditional Reasoning

The main aim of this study was to examine whether people understand indicative conditionals on the basis of syntactic factors or on the basis of subjective conditional probability. The second aim was to investigate whether the conditional probability of q given p depends on the antecedent and consequent sizes or derives from inductive processes leading to establish a link of plausible cooccurrence between events semantically or experientially associated. These competing hypotheses have been tested through a 3 x 2 x 2 x 2 mixed design involving the manipulation of four variables: type of instructions (“Consider the following statement to be true", “Read the following statement" and condition with no conditional statement); antecedent size (high/low); consequent size (high/low); statement probability (high/low). The first variable was between-subjects, the others were within-subjects. The inferences investigated were Modus Ponens and Modus Tollens. Ninety undergraduates of the Second University of Naples, without any prior knowledge of logic or conditional reasoning, participated in this study. Results suggest that people understand conditionals in a syntactic way rather than in a probabilistic way, even though the perception of the conditional probability of q given p is at least partially involved in the conditionals- comprehension. They also showed that, in presence of a conditional syllogism, inferences are not affected by the antecedent or consequent sizes. From a theoretical point of view these findings suggest that it would be inappropriate to abandon the idea that conditionals are naturally understood in a syntactic way for the idea that they are understood in a probabilistic way.

Project Management Success for Contractors

The aim of this paper is to provide a better understanding of the implementation of Project Management practices by UiTM contractors to ensure project success. A questionnaire survey was administered to 120 UiTM contractors in Malaysia. The purpose of this method was to gather information on the contractors- project background and project management skills. It was found that all of the contractors had basic knowledge and understanding of project management skills. It is suggested that a reasonable project plan and an appropriate organizational structure are influential factors for project success. It is recommended that the contractors need to have an effective program of work and up to date information system are emphasized.

Comparative Study of Tensile Properties of Cortical Bone Using Sub-size Specimens and Finite Element Simulation

Bone material is treated as heterogeneous and hierarchical in nature therefore appropriate size of bone specimen is required to analyze its tensile properties at a particular hierarchical level. Tensile properties of cortical bone are important to investigate the effect of drug treatment, disease and aging as well as for development of computational and analytical models. In the present study tensile properties of buffalo as well as goat femoral and tibiae cortical bone are analyzed using sub-size tensile specimens. Femoral cortical bone was found to be stronger in tension as compared to the tibiae cortical bone and the tensile properties obtained using sub-size specimens show close resemblance with the tensile properties of full-size cortical specimens. A two dimensional finite element (FE) modal was also applied to simulate the tensile behavior of sub-size specimens. Good agreement between experimental and FE model was obtained for sub-size tensile specimens of cortical bone.