Activities of Alkaline Phosphatase and Ca2+ATPase over the Molting Cycle of mud Crab (Scylla serrata)

The activities of alkaline phosphatase and Ca2+ATPase in mud crab (Scylla serrata) collected from a soft-shell crab farm in Chantaburi Province, Thailand, in several stages of molting cycle were observed. The results showed that the activity of alkaline phosphatase in gill after molting was highly significant (p

Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse

Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.

On the Properties of Pseudo Noise Sequences with a Simple Proposal of Randomness Test

Maximal length sequences (m-sequences) are also known as pseudo random sequences or pseudo noise sequences for closely following Golomb-s popular randomness properties: (P1) balance, (P2) run, and (P3) ideal autocorrelation. Apart from these, there also exist certain other less known properties of such sequences all of which are discussed in this tutorial paper. Comprehensive proofs to each of these properties are provided towards better understanding of such sequences. A simple test is also proposed at the end of the paper in order to distinguish pseudo noise sequences from truly random sequences such as Bernoulli sequences.

To Join or Not to Join: The Effects of Healthcare Networks

This study uses a simulation to establish a realistic environment for laboratory research on Accountable Care Organizations. We study network attributes in order to gain insights regarding healthcare providers- conduct and performance. Our findings indicate how network structure creates significant differences in organizational performance. We demonstrate how healthcare providers positioning themselves at the central, pivotal point of the network while maintaining their alliances with their partners produce better outcomes.

Selection and Design of an Axial Flow Fan

This work presents a methodology for the selection and design of propeller oriented to the experimental verification of theoretical results. The problem of propeller selection and design usually present itself in the following manner: a certain air volume and static pressure are required for a certain system. Once the necessity of fan design on a theoretical basis has been recognized, it is possible to determinate the dimensions for a fan unit so that it will perform in accordance with a certain set of specifications. The same procedures in this work then can be applied in other propeller selection.

Space Vector Pulse Width Modulation Technique Based Design and Simulation of a Three-Phase Voltage Source Converter Systems

A Space Vector based Pulse Width Modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the Space Vector based Pulse Width Modulation, Sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value sine signal is large than triangle signal, the pulse will start produce to high. And then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will changed by changing the value of the modulation index and frequency used in this system to produce more pulse width. The more pulse width produced, the output voltage will have lower harmonics contents and the resolution increase.

Controller Design of Discrete Systems by Order Reduction Technique Employing Differential Evolution Optimization Algorithm

One of the main objectives of order reduction is to design a controller of lower order which can effectively control the original high order system so that the overall system is of lower order and easy to understand. In this paper, a simple method is presented for controller design of a higher order discrete system. First the original higher order discrete system in reduced to a lower order model. Then a Proportional Integral Derivative (PID) controller is designed for lower order model. An error minimization technique is employed for both order reduction and controller design. For the error minimization purpose, Differential Evolution (DE) optimization algorithm has been employed. DE method is based on the minimization of the Integral Squared Error (ISE) between the desired response and actual response pertaining to a unit step input. Finally the designed PID controller is connected to the original higher order discrete system to get the desired specification. The validity of the proposed method is illustrated through a numerical example.

Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft

Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.

A Comparative Cross-sectional Study of Religious Behavior in High School and University Students

The purpose of this study was to investigate the religious behavior of students in high school and universality in Lamerd , a town in the south of Iran, with respect to increase in their level of education and age. The participants were 450 high school and university students in all levels from first year of junior high school to the senior university students who were chosen through multistage cluster sampling method and their religious behavior was studied. Through the revised questionnaire by Nezar Alany from the University of Bahrain (r = 0/797), the religious behavior of the subjects were analyzed. Results showed that students in high school in religious behavior were superior to the students of university (003/0>p) and there was a decline of religious behavior in junior high school third year students to second students of the same school (042/0>p). More important is that the decrease in religious behavior was associated with increase in educational levels (017/0>p) and age (043/0>p).

An UML Statechart Diagram-Based MM-Path Generation Approach for Object-Oriented Integration Testing

MM-Path, an acronym for Method/Message Path, describes the dynamic interactions between methods in object-oriented systems. This paper discusses the classifications of MM-Path, based on the characteristics of object-oriented software. We categorize it according to the generation reasons, the effect scope and the composition of MM-Path. A formalized representation of MM-Path is also proposed, which has considered the influence of state on response method sequences of messages. .Moreover, an automatic MM-Path generation approach based on UML Statechart diagram has been presented, and the difficulties in identifying and generating MM-Path can be solved. . As a result, it provides a solid foundation for further research on test cases generation based on MM-Path.

Fuzzy Logic Control for a Speed Control of Induction Motor using Space Vector Pulse Width Modulation

This paper presents design and implements a voltage source inverter type space vector pulse width modulation (SVPWM) for control a speed of induction motor. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the stator voltage, the ratio of stator voltage to frequency should be kept constant. The fuzzy logic controller is also introduced to the system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

Comparative Evaluation of Color-Based Video Signatures in the Presence of Various Distortion Types

The robustness of color-based signatures in the presence of a selection of representative distortions is investigated. Considered are five signatures that have been developed and evaluated within a new modular framework. Two signatures presented in this work are directly derived from histograms gathered from video frames. The other three signatures are based on temporal information by computing difference histograms between adjacent frames. In order to obtain objective and reproducible results, the evaluations are conducted based on several randomly assembled test sets. These test sets are extracted from a video repository that contains a wide range of broadcast content including documentaries, sports, news, movies, etc. Overall, the experimental results show the adequacy of color-histogram-based signatures for video fingerprinting applications and indicate which type of signature should be preferred in the presence of certain distortions.

Efficient Time Synchronization in Wireless Sensor Networks

Energy efficiency is the key requirement in wireless sensor network as sensors are small, cheap and are deployed in very large number in a large geographical area, so there is no question of replacing the batteries of the sensors once deployed. Different ways can be used for efficient energy transmission including Multi-Hop algorithms, collaborative communication, cooperativecommunication, Beam- forming, routing algorithm, phase, frequency and time synchronization. The paper reviews the need for time synchronization and proposed a BFS based synchronization algorithm to achieve energy efficiency. The efficiency of our protocol has been tested and verified by simulation

Promotion of Growth and Modulation of As- Induced Stress Ethylene in Maize by As- Tolerant ACC Deaminase Producing Bacteria

One of the major pollutants in the environment is arsenic (As). Due to the toxic effects of As to all organisms, its remediation is necessary. Conventional technologies used in the remediation of As contaminated soils are expensive and may even compromise the structure of the soil. An attractive alternative is phytoremediation, which is the use of plants which can take up the contaminant in their tissues. Plant growth promoting bacteria (PGPB) has been known to enhance growth of plants through several mechanisms such as phytohormone production, phosphate solubilization, siderophore production and 1-aminocyclopropane-1- carboxylate (ACC) deaminase production, which is an essential trait that aids plants especially under stress conditions such as As stress. Twenty one bacteria were isolated from As-contaminated soils in the vicinity of the Janghang Smelter in Chungnam Province, South Korea. These exhibited high tolerance to either arsenite (As III) or arsenate (As V) or both. Most of these isolates possess several plant growth promoting traits which can be potentially exploited to increase phytoremediation efficiency. Among the identified isolates is Pseudomonas sp. JS1215, which produces ACC deaminase, indole acetic acid (IAA), and siderophore. It also has the ability to solubilize phosphate. Inoculation of JS1215 significantly enhanced root and shoot length and biomass accumulation of maize under normal conditions. In the presence of As, particularly in lower As level, inoculation of JS1215 slightly increased root length and biomass. Ethylene increased with increasing As concentration, but was reduced by JS1215 inoculation. JS1215 can be a potential bioinoculant for increasing phytoremediation efficiency.

Exploiting Self-Adaptive Replication Management on Decentralized Tuple Space

Decentralized Tuple Space (DTS) implements tuple space model among a series of decentralized hosts and provides the logical global shared tuple repository. Replication has been introduced to promote performance problem incurred by remote tuple access. In this paper, we propose a replication approach of DTS allowing replication policies self-adapting. The accesses from users or other nodes are monitored and collected to contribute the decision making. The replication policy may be changed if the better performance is expected. The experiments show that this approach suitably adjusts the replication policies, which brings negligible overhead.

Thermosolutal MHD Mixed Marangoni Convective Boundary Layers in the Presence of Suction or Injection

The steady coupled dissipative layers, called Marangoni mixed convection boundary layers, in the presence of a magnetic field and solute concentration that are formed along the surface of two immiscible fluids with uniform suction or injection effects is examined. The similarity boundary layer equations are solved numerically using the Runge-Kutta Fehlberg with shooting technique. The Marangoni, buoyancy and external pressure gradient effects that are generated in mixed convection boundary layer flow are assessed. The velocity, temperature and concentration boundary layers thickness decrease with the increase of the magnetic field strength and the injection to suction. For buoyancy-opposed flow, the Marangoni mixed convection parameter enhances the velocity boundary layer but decreases the temperature and concentration boundary layers. However, for the buoyancy-assisted flow, the Marangoni mixed convection parameter decelerates the velocity but increases the temperature and concentration boundary layers.

Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform

In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.

Finite Element Modelling of Ground Vibrations Due to Tunnelling Activities

This paper presents the use of three-dimensional finite elements coupled with infinite elements to investigate the ground vibrations at the surface in terms of the peak particle velocity (PPV) due to construction of the first bore of the Dublin Port Tunnel. This situation is analysed using a commercially available general-purpose finite element package ABAQUS. A series of parametric studies is carried out to examine the sensitivity of the predicted vibrations to variations in the various input parameters required by finite element method, including the stiffness and the damping of ground. The results of this study show that stiffness has a more significant effect on the PPV rather than the damping of the ground.

Dynamic Threshold Adjustment Approach For Neural Networks

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.