Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Pre-beneficiation of Low Grade Diasporic Bauxite Ore by Reduction Roasting

A bauxite ore can be utilized in Bayer Process, if the mass ratio of Al2O3 to SiO2 is greater than 10. Otherwise, its FexOy and SiO2 content should be removed. On the other hand, removal of TiO2 from the bauxite ore would be beneficial because of both lowering the red mud residue and obtaining a valuable raw material containing TiO2 mineral. In this study, the low grade diasporic bauxite ore of Yalvaç, Isparta, Turkey was roasted under reducing atmosphere and subjected to magnetic separation. According to the experimental results, 800°C for reduction temperature and 20000 Gauss of magnetic intensity were found to be the optimum parameters for removal of iron oxide and rutile from the nonmagnetic ore. On the other hand, 600°C and 5000 Gauss were determined to be the optimum parameters for removal of silica from the non-magnetic ore.

Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion

In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.

Learner Awareness Levels Questionnaire: Development and Preliminary Validation of the English and Malay Versions to Measure How and Why Students Learn

The purpose of this study is to evaluate the English version and a Malay translation of the 21-item Learner Awareness Questionnaire for its application to assess student learning in higher education. The Learner Awareness Questionnaire, originally written in English, is a quantitative measure of how and why students learn. The questionnaire gives an indication of the process and motives to learn using four scales: survival, establishing stability, approval and loving to learn. Data in the present study came from 680 university students enrolled in various programmes in Malaysia. The Malay version of the questionnaire supported a similar four factor structure and internal consistency to the English version. The four factors of the Malay version also showed moderate to strong correlations with those of the English versions. The results suggest that the Malay version of the questionnaire is similar to the English version. However, further refinement to the questions is needed to strengthen the correlations between the two questionnaires.

Home Education in the Australian Context

This paper will seek to clarify important key terms such as home schooling and home education as well as the legalities attached to such terms. It will reflect on the recent proposed changes to terminology in NSW, Australia. The various pedagogical approaches to home education will be explored including their prominence in the Australian context. There is a strong focus on literature from Australia. The historical background of home education in Australia will be explained as well as the difference between distance education and home education. The future of home education in Australia will be discussed.

A Compilation of Nanotechnology in Thin Film Solar Cell Devices

Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as Cadmium Telluride (CdTe), Copper-Indium-Gallium-diSelenide (CIGS), Copper-Zinc-Tin-Sulphide (CZTS), and Dye-Sensitized Solar Cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures.

A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy CMeans methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc.).

Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

The Effect of Aging of ZnO, AZO, and GZO Films on the Microstructure and Photoelectric Property

RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films. The AZO film had the best electrical properties; it had the lowest resistivity of 6.6 × 10-4 cm, the best sheet resistance of 2.2 × 10-1 Ω/square, and the highest carrier concentration of 4.3 × 1020 cm-3, as compared to the ZnO and GZO films.

Nanoindentation of Thin Films Prepared by Physical Vapor Deposition

These Monolayer and multilayer coatings of CrN and AlCrN deposited on 100Cr6 (AISI 52100) substrate by PVD magnetron sputtering system. The microstructures of the coatings were characterized using atomic force microscopy (AFM). The AFM analysis revealed the presence of domes and craters that are uniformly distributed over all surfaces of the various layers. Nanoindentation measurement of CrN coating showed maximum hardness (H) and modulus (E) of 14 GPa and 190 GPa, respectively. The measured H and E values of AlCrN coatings were found to be 30 GPa and 382 GPa, respectively. The improved hardness in both the coatings was attributed mainly to a reduction in crystallite size and decrease in surface roughness. The incorporation of Al into the CrN coatings has improved both hardness and Young’s modulus.

Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator

The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.

Ergonomics Aspects of Work with Computers

This paper is based on a large questionnaire study. The paper presents how all participants and subgroups (upper- and lower-level white-collar workers) answered the question, “Have you had an ache, pain, or numbness, which you associate with desktop computer use, in the different body parts during the last 12 months?’ 14.6% of participants (19.4% of women and 8.2% of men) reported that they had often or very often physical symptoms in the neck. Even if our results cannot prove a causal relation of symptoms with computer use, show that workers believe that computer use can influence their wellbeing: this is important when devising treatment modalities to decrease these physical symptoms.

Gimbal Structure for the Design of 3D Flywheel System

New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.

Strategic Risk Issues for Film Distributors of Hindi Film Industry in Mumbai: A Grounded Theory Approach

The purpose of the paper is to address the strategic risk issues surrounding Hindi film distribution in Mumbai for a film distributor, who acts as an entrepreneur when launching a product (movie) in the market (film territory).The paper undertakes a fundamental review of films and risk in the Hindi film industry and applies Grounded Theory technique to understand the complex phenomena of risk taking behavior of the film distributors (both independent and studios) in Mumbai. Rich in-depth interviews with distributors are coded to develop core categories through constant comparison leading to conceptualization of the phenomena of interest. This paper is a first-of-its-kind-attempt to understand risk behavior of a distributor, which is akin to entrepreneurial risk behavior under conditions of uncertainty.

Governance and Economic Growth: Evidence of Ten Asian Countries

This study utilizes a frequency domain approach over the period of 1996 to 2013 to examine the causal relationship between governance and economic growth in ten Asian countries, which have different levels of democracy; classified as “Free”, “Partly Free”, and “Not Free” countries. The empirical results show that there is no Granger causality running from governance to economic growth in “Not Free” countries and “Partly Free” countries with the exception of Singapore. As for “Free” countries such as South Korea and Taiwan, there is a one-way causality running from governance to economic growth. The findings of this study indicate that policy makers in South Korea, Taiwan, and Singapore could use governance index to improve their predictions of the future economic growth.

A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.

UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash

Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level in many of the distilleries in India, but are not properly working due to fouling problem which is caused by the presence of high concentration of organic matter and other contaminants in biologically treated spentwash. In order to make the membrane treatment a proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) for pretreatment of RO at tertiary stage has been performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15-43°C) were used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS was 62%, 93.5% and 75.5% respectively, with UF, at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.

A Thermodynamic Study of Parameters That Affect the Nitration of Glycerol with Nitric Acid

Biodiesel production from vegetable oil will produce glycerol as by-product about 10% of the biodiesel production. The amount of glycerol that was produced needed alternative way to handling immediately so as to not become the waste that polluted environment. One of the solutions was to process glycerol to polyglycidyl nitrate (PGN). PGN is synthesized from glycerol by three-step reactions i.e. nitration of glycerol, cyclization of 13- dinitroglycerine and polymerization of glycosyl nitrate. Optimum condition of nitration of glycerol with nitric acid has not been known. Thermodynamic feasibility should be done before run experiments in the laboratory. The aim of this study was to determine the parameters those affect nitration of glycerol and nitric acid and chose the operation condition. Many parameters were simulated to verify its possibility to experiment under conditions which would get the highest conversion of 1, 3-dinitroglycerine and which was the ideal condition to get it. The parameters that need to be studied to obtain the highest conversion of 1, 3-dinitroglycerine were mol ratio of nitric acid/glycerol, reaction temperature, mol ratio of glycerol/dichloromethane and pressure. The highest conversion was obtained in the range of mol ratio of nitric acid /glycerol between 2/1 – 5/1, reaction temperature of 5-25oC and pressure of 1 atm. The parameters that need to be studied further to obtain the highest conversion of 1.3 DNG are mol ratio of nitric acid/glycerol and reaction temperature.

Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.