Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

Production of 3-Methyl-1-Butanol by Yeast Wild Strain

The biomass-based fuels have become great concern in order to replace the petroleum-based fuels. Biofuels are a wide range of fuels referred to liquid, gas and solid fuels produced from biomass. Recently, higher chain alcohols such as 3-methyl-1-butanol and isobutanol have become a better candidate compared to bioethanol in order to replace gasoline as transportation fuel. Therefore, in this study, 3-methyl-1-butanol was produced through a fermentation process by yeast. Several types of yeast involved in this research including Saccharomyces cerevisiae, Kluyveromyces lactis GG799 and Pichia pastoris (KM71H, GS115 and X33). The result obtained showed that K. lactis GG799 gave the highest concentration of 3-methyl-1-butanol at 274 mg/l followed by S. cerevisiae, P. pastoris GS115, P. pastoris KM71H and P. pastoris X33 at 265 mg/l, 190 mg/l, 182 mg/l and 174 mg/l respectively. Based on the result, it proved that yeast have a potential in producing 3-methyl-1-butanol naturally.

Comparative Studies on Interactions of Synthetic and Natural Compounds with Hen Egg-White Lysozyme

Amyloid aggregation of polypeptides is related to a growing number of pathologic states known as amyloid disorders. In recent years, blocking or reversing amyloid aggregation via the use of small compounds are considered as two useful approaches in hampering the development of these diseases. In this research, we have compared the ability of several manganese-salen derivatives, as synthetic compounds, and apigenin, as a natural flavonoid, to inhibit of hen egg-white lysozyme (HEWL) aggregation, as an in vitro model system. Different spectroscopic analyses such as Thioflavin T (ThT) and Anilinonaphthalene-8-sulfonic acid (ANS) fluorescence, Congo red (CR) absorbance along with transmission electron microscopy were used in this work to monitor the HEWL aggregation kinetic and inhibition. Our results demonstrated that both type of compounds were capable to prevent the formation of lysozyme amyloid aggregation in vitro. In addition, our data indicated that synthetic compounds had higher activity to inhibit of the β-sheet structures relative to natural compound. Regarding the higher antioxidant activities of the salen derivatives, it can be concluded that in addition to aromatic rings of each of the compounds, the potent antioxidant properties of salen derivatives contributes to lower lysozyme fibril accumulation.

Inadequate Requirements Engineering Process: A Key Factor for Poor Software Development in Developing Nations: A Case Study

Developing a reliable and sustainable software products is today a big challenge among up–coming software developers in Nigeria. The inability to develop a comprehensive problem statement needed to execute proper requirements engineering process is missing. The need to describe the ‘what’ of a system in one document, written in a natural language is a major step in the overall process of Software Engineering. Requirements Engineering is a process use to discover, analyze and validate system requirements. This process is needed in reducing software errors at the early stage of the development of software. The importance of each of the steps in Requirements Engineering is clearly explained in the context of using detailed problem statement from client/customer to get an overview of an existing system along with expectations from the new system. This paper elicits inadequate Requirements Engineering principle as the major cause of poor software development in developing nations using a case study of final year computer science students of a tertiary-education institution in Nigeria.

Kinematic Parameters for Asa River Routing

Flood routing is used in estimating the travel time and attenuation of flood waves as they move downstream a river or channel. The routing procedure is usually classified as hydrologic or hydraulic. Hydraulic methods utilize the equations of continuity and motion. Kinematic routing, a hydraulic technique was used in routing Asa River at Ilorin. The river is of agricultural and industrial importance to Ilorin, the capital of Kwara State, Nigeria. This paper determines the kinematic parameters of kinematic wave velocity, time step, time required to traverse, weighting factor and change in length. Values obtained were 4.67 m/s, 19 secs, 21 secs, 0.75 and 100 m, respectively. These parameters adequately reflect the watershed and flow characteristics essential for the routing. The synthetic unit hydrograph was developed using the Natural Resources Conservation Service (NRCS) method. 24-hr 10yr, 25yr, 50yr and 100yr storm hydrographs were developed from the unit hydrograph using convolution procedures and the outflow hydrographs were obtained for each of 24-hr 10yr, 25yr, 50yr and 100yr indicating 0.11 m3/s, 0.10 m3/s, 0.10 m3/s and 0.10 m3/s attenuations respectively.

Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptiloliteby Ion-Exchange Process

Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.

Targeting the Life Cycle Stages of the Diamond Back Moth (Plutella xylostella) with Three Different Parasitoid Wasps

A continuous time model of the interaction between crop insect pests and naturally beneficial pest enemies is created using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull distribution. The crop pest is present in all its life-cycle stages of: egg, larva, pupa and adult. The beneficial insects, parasitoid wasps, may be present in either or all parasitized: eggs, larva and pupa. Population modelling is used to estimate the quantity of the natural pest enemies that should be introduced into the pest infested environment to suppress the pest population density to an economically acceptable level within a prescribed number of days. The results obtained illustrate the effect of different combinations of parasitoid wasps, using the Pascal distribution to estimate their success in parasitizing different pest developmental stages, to deliver pest control to a sustainable level. Effective control, within a prescribed number of days, is established by the deployment of two or all three species of wasps, which partially destroy pest: egg, larvae and pupae stages. The selected scenarios demonstrate effective sustainable control of the pest in less than thirty days.

Financial Sources and Instruments for Public Grants and Financial Facilities of Smes in EU

Mostly of public financing programs at national and regional level are funded from European Union sources. EU can participate directly to a national and regional program (example LEADER initiative, URBAN…) or indirectly by funding regional or national funds.Funds from European Union are provided from EU multiannual financial framework form which the annual budget is programmed. The adjusted program 2007-2013 of the EU considered commitments of almost 1 trillion Euros for the EU-28 countries. Provisions of the new program 2014-2020 consider commitments of more than 1 trillion Euros. Sustainable growth, divided to Cohesion and Competitiveness for Growth an Employment, is one of the two principal categories; the other is the preservation and management of natural resources.Through this financing process SMEs benefited of EU and public sources by receiving grants for their investments. Most of the financial instruments are available indirectly through the national financial intermediaries. Part of them is managed by the European Investment Fund.The paper focuses on the public financing to SMEs by examining case studies on divers forms of public help. It tries to distinguish the efficiency of the examined good practices and therefore try to have some conclusions on the possibility of application to other regions.

Natural Ventilation for the Sustainable Tall Office Buildings of the Future

Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical airconditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed.

Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms

The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P

Hypergraph Models of Metabolism

In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterise a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.

Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Combustion and Emission Characteristics in a Can-type Combustion Chamber

Combustion phenomenon will be accomplished effectively by the development of low emission combustor. One of the significant factors influencing the entire Combustion process is the mixing between a swirling angular jet (Primary Air) and the non-swirling inner jet (fuel). To study this fundamental flow, the chamber had to be designed in such a manner that the combustion process to sustain itself in a continuous manner and the temperature of the products is sufficiently below the maximum working temperature in the turbine. This study is used to develop the effective combustion with low unburned combustion products by adopting the concept of high swirl flow and motility of holes in the secondary chamber. The proper selection of a swirler is needed to reduce emission which can be concluded from the emission of Nox and CO2. The capture of CO2 is necessary to mitigate CO2 emissions from natural gas. Thus the suppression of unburned gases is a meaningful objective for the development of high performance combustor without affecting turbine blade temperature.

Structural Analysis of a Composite Wind Turbine Blade

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Diversity and Distribution of Benthic Invertebrates in the West Port, Malaysia

The purpose of this paper is to describe the main characteristics of macroinvertebrate species in response to environmental forcing factors. Overall, 23 species of Mollusca, 4 species of Arthropods, 3 species of Echinodermata and 3 species of Annelida were identified at the 9 sampling stations during four sampling periods. Individual species of Mollusca constituted 36.4% of the total abundance, followed by Arthropods (27.01%), Annelida (34.3%) and Echinodermata (2.4%). The results of Kruskal-Wallis test indicated that a significant difference (p

Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

DNA Methylation Changes Caused by Lawsone

Lawsone is a pigment that occurs naturally in plants. It has been used as a skin and hair dye for a long time. Moreover, its different biological activities have been reported. The present study focused on the effect of lawsone on a plant cell model represented by tobacco BY-2 cell suspension culture, which is used as a model comparable with the HeLa cells. It has been shown that lawsone inhibits the cell growth in the concentration-dependent manner. In addition, changes in DNA methylation level have been determined. We observed decreasing level of DNA methylation in the presence of increasing concentrations of lawsone. These results were accompanied with overproduction of reactive oxygen species (ROS). Since epigenetic modifications can be caused by different stress factors, there could be a connection between the changes in the level of DNA methylation and ROS production caused by lawsone.

The Statistical Significant of Adsorbents for Effective Zn (II) Ions Removal

The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d ≈ 15 mm). The obtained values of adsorption efficiency was subjected to the independent-samples t test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets (size d ≈ 15 mm) and activated carbon (½t½=6.909), natural zeolite (½t½=10.380), mixture of activated carbon and natural zeolite (½t½=9.865), bentonite (½t½=6.159), fired clay (½t½=6.641), fired clay pellets (size d ≈ 5 mm) (½t½=6.678), fired clay pellets (size d ≈ 8 mm) (½t½=3.422), respectively.