Targeting the Life Cycle Stages of the Diamond Back Moth (Plutella xylostella) with Three Different Parasitoid Wasps

A continuous time model of the interaction between
crop insect pests and naturally beneficial pest enemies is created
using a set of simultaneous, non-linear, ordinary differential
equations incorporating natural death rates based on the Weibull
distribution. The crop pest is present in all its life-cycle stages of:
egg, larva, pupa and adult. The beneficial insects, parasitoid wasps,
may be present in either or all parasitized: eggs, larva and pupa.
Population modelling is used to estimate the quantity of the natural
pest enemies that should be introduced into the pest infested
environment to suppress the pest population density to an
economically acceptable level within a prescribed number of days.
The results obtained illustrate the effect of different combinations of
parasitoid wasps, using the Pascal distribution to estimate their
success in parasitizing different pest developmental stages, to deliver
pest control to a sustainable level. Effective control, within a
prescribed number of days, is established by the deployment of two
or all three species of wasps, which partially destroy pest: egg, larvae
and pupae stages. The selected scenarios demonstrate effective
sustainable control of the pest in less than thirty days.





References:
[1] K. L. Bassil, C. Vakil, M. D. Sanborn, D. C. Cole, J. S. Kaur, K. J. Kerr
(2007). Cancer health effects of pesticides: a systematic review. Can
Fam Physician2007;53:1704-11.
[2] B. R. W. Mnif, A. I. H.Hassine, A.Bouaziz, A. Bartegi, O. Thomas
(2011) Effect of Endocrine Disruptor Pesticides: A Review Int J Environ
Res Public Health. 8(6): 2265–2303. doi: 10.3390/ijerph8062265
[3] D. W. Kolpin, E. M. Thurman, S. M. Linhart (2000). Finding minimal
herbicide concentrations in ground water? Try looking for their
degradates. Sci. Total Environ. 248:115–122.
[4] S. Iñigo-Nuñez, M. A. Herreros, T. Encinas, A. Gonzalez-Bulnes
(2010). Estimated daily intake of pesticides and xenoestrogenic exposure
by fruit consumption in the female population from a Mediterranean
country (Spain) Food Control. 21:471–477
[5] K. A. Osman, A. I. Al-Humaid, S. M. Al-Rehiayani, K. N. Al-
Redhaiman (2010). Estimated daily intake of pesticide residues exposure
by vegetables grown in greenhouses in al-qassim region; Saudi Arabia.
Food Control. doi: 10.1016/j.foodcont.2010.11.031.
[6] C. L. Curl, R. A. Fenske, J. C. Kissel, J. H. Shirai, T. F. Moate, W.
Griffith, G. Coronado, B. Thompson (2002). Evaluation of take-home
organophosphorus pesticide exposure among agricultural workers and
their children. Environ. Health Perspect. 2002;110:A787–A792.
[7] T. Berman, D. Hochner-Celnikier, B. D Boyd, L. L. Needham, Y.
Amitai, U. Wormser, E. Richter (2011). Pesticide exposure among
pregnant women in Jerusalem, Israel: Results of a pilot study. Environ.
Int. 37:198–203.
[8] R. M. Whyatt, D. Camann, F. P. Perera, V. A. Rauh, D. Tang, P. L.
Kinney, R. Garfinkel, H. Andrews, L. Hoepner, D. B. Barr (2005).
Biomarkers in assessing residential insecticide exposures during
pregnancy and effects on fetal growth. Toxicol. Appl. Pharmacol.
2005;206:246–254.
[9] D. Payne-Sturges, J. Cohen, R. Castorina, D. A. Axelrad, T. J.Woodruff
(2009). Evaluating cumulative organophosphorus pesticide body burden
of children, a national case study. Environ. Sci. Technol. 2009;43:7924–
7930.
[10] P. Reynolds, J. B. Von, R. B. Gunier, D. E. Goldberg, A. Hertz, M. E.
Harnly (2002) . Childhood cancer and agricultural pesticide use, an
ecologic study in California. Environ. Health Perspect.;110:319–324
[11] J.T.Efrid, E.A.Holly, S.Preston-Martin, B. A. Mueller, F. Lubin, G.
Filippini, R. Peris-Bonet, M. McCredie, S. Cordier, A. Arslan, P. M.
Bracci (2003). Farm – related exposures and childhood brain tumours in
seven countries: results from the SEARCH International Brain Tumour
Study, Paediatric and perinatal Epidemiology, 17(2): 201-11
[12] J. M. Pogoda, S.Preston –Martins (1997). Household pesticides and risk
of pediatric brain tumours, Environmental Health Perspectives, 1997;
105: 1214-1220
[13] W. E. Van, P. A. Stewart, A.F. Olshan, D. A. Savitz, G. R. Bunin (2003)
Parental occupational exposure to pesticides and childhood brain cancer.
American Journal of Epidemiology. 2003; 157(11): 989-97
[14] J.F. Viel, B. Challier, A. Pitard, D. Pobel (1998). Brain cancer mortality
among French farmers: the vineyard pesticide hypothesis. Archives of
Environmental Health. 1998; 53: 65-70
[15] Y.Fujii, K.Haraguchi, K.H.Harada, T.Hitomi, K.Inoue, Y.Itoh, T.
Watanabe, K. Takenaka, S. Uehara, H. R.Yang (2011). Detection of
dicofol and related pesticides in human breast milk from China; Korea
and Japan. Chemosphere. 82:25–31.
[16] M. K.Kettles, S.R.Browning, T.SPrince, S.W.Horstman (1997). Triazine
herbicides exposure and breast cancer incidence: an ecological study of
Kentucky countries. Environmental Health Perspectives; 1997; 105:
1222-27
[17] B. A.Cohn (2011). Developmental and environmental origins of breast
cancer: DDT as a case study. Reprod. Toxicol. 31:302–311.
[18] M.H. Abdalla, M.L. Gutierrez-Mohamed, I.O. Farah(2003). Association
of pesticides exposure and risk of breast cancer mortality in Mississippi.
Biomedical Science Instrumentation. 39: 397-01
[19] G. Giacomelli, P. Ling, R. Morden (1996). An Automated Plant
Monitoring System Using Machine Vision. ActaHorticulturae (ISHS)
440, 377–382.
[20] R. Pydipati, T. F. Burks, W. S. Lee (2006). Identification of citrus
disease using colour texture features and discriminant analysis, Journal
of Computers and electronics in Agriculture.
[21] G. K. Dae, T. F. Burks, Q. Jianwei, D. M. Bulanon (2009).
Classification of grapefruit peel diseases using color texture feature
analysis Int J Agric&BiolEng Vol. 2 No.3
[22] C.Bauch, T.Rath (2005). Prototype of a Vision Based System for
Measurements of White Fly Infestation. In: Acta Horticulturae (ISHS)
691. pp. 773–780
[23] B.Skaloudova, V. Krivan, R. Zemek (September, 2006). Computerassisted
Estimation of Leaf Damage caused by Spider Mites. Computers
and Electronics in Agriculture 53 (2), 81–91
[24] P. Boissard, M. Vincent, & S. Moisan (2010). A Cognitive Vision
Approach to Early Pest Detection in Greenhouse Crops. Computers and
Electronics in Agriculture 62(2): 81-93 &inria 00499603, pp.1-24
[25] L.O. Solis-Sanchez, R. Castaneda-Miranda, C.L. , Castaneda-Miranda, J.
J. Alaniz-Lumbreras, I. Torres-Pacheco, R.G. Guevara-Gonzalez, P.D.
Alaniz-Lumbreras (2001). scale invariant feature approach for insect
monitoring. Comput.Electron.Agric. 75,92-99
[26] J. A. Jiang, C.L. , Tseng, F. M. Lu, E. C.Yang, Z.S. Wu,C.P.Chen,
S.H.Lin,K.C.Lin, C. S.Liao (2008). A GSM based remote wireless
automatic monitoring system for field information: a case study for
ecological monitoring of oriental fruit fly, Bactroceradorsalis(Hendel).
Computer Electronics Agric. 62, 243-259
[27] H. Ruizhen, H. Yong, F. Liu (2012). Feasibility Study on a Portable
Field Pest Classification system design based on DSP and 3G wireless
communication technology, Sensor 12, 3118-3130
[28] B.Datt, A. Apan and R. Kelly (2006). Early detection of Exotic Pests
and Diseases in Asian vegetable by imaging Spectroscopy, Rural
Industrial Research and Development corporation (RIRDC) Publication
No 05/170
[29] R.K.Samanta,and G. Indrajit (2012). Tea Insect Pests Classification
Based on artificial Neural Networks, IJCES 2(6)
[30] S. R. Pokharkar, and V. R.Thool (2012). Early pest Identification in
green house crops using image processing technigues IJCSN 1(3)
[31] L.S.Jamal-Aldin, R. C. D. Young, C.R.Chatwin (1997). Application of
nonlinearity to wavelet-transformed images to improve correlation filter
performance. Applied optics 36 (35), 9212-9224
[32] F. O. Faithpraise, P.M. Birch, R. C. D. Young,J. Obu, B. Faithpriase, C.
R. Chatwin (2013a). Automatic Plant pest Detection & Recognition
using k-means clustering algorithm & correspondence
filtersInternational Journal of Advanced Biotechnology and Research
ISSN 0976-2612, Online ISSN 2278–599X,Vol 4, Issue 2, pp. 1052-
1062 http://www.bipublication.com
[33] U. S. Environmental Protection Agency (2012). Integrated Pest
Management (IMP) Principles http://www.epa.gov/pesticides/
factsheets/ipm.htm (Retrieved 2/10/13)
[34] BioControl Reference CenterAcosta, EW (1995-2006). The History of
Integrated Pest Management (IPM)
http://www.biconet.com/reference/IPMhistory.html (Retrieved 2/10/13)
[35] A. H. Sandler (2010). Integrated Pest Management Cranberry Station
Best Management Practices 1(1):12-15.
[36] I. P. M. Guidelines (2009). UMassAmherst: Integrated Pest
Management, Agriculture and Landscape Program.
http://www.umass.edu/umext/ipm/publications.( Retrieved 3/03/ 2012).
[37] H.J.Barclay, I.S.Otvos, and A.J.Thomson, (1970). Models of periodic
inundation of parasitoids for pest control, Canad.Entomol. 117, pp. 705–
716.
[38] R.M. May, M.P. Hassell (1988). Population dynamics and biological
control, Phil. Trans. R. Soc. Lond. B. 318, 129-169
[39] W.W.Murdoch (1990). The relevance of pest-enemy models to
biological control. In M. Mackauer, L.E. Ehler and J. Roland (Editors),
Critical Issues in Biological Control. Intercept, Andover, pp. 1-24
[40] N. J. Mills, W.M. Getz (1996). Modelling the biological control of insect
pests: a review of host-parasitoid models. Ecological Modelling, 92,
pp.121-143.
[41] Z. Varga, (2008). Applications of mathematical systems theory in
population biology, Period. Math. Hungar. 56 (1) pp. 157–168
[42] M.Gámez, I. López, and A. Shamandy(2010). Open-and closed-loop
equilibrium control of trophic chains, Ecol. Modell.221, pp. 1839–1846
[43] M. Rafikov, J.M. Balthazar, and H.F. B. Von, (2008). Mathematical
modeling and control of population systems: application in biological
pest control, Appl. Math. Comput. 200 pp. 557–573
[44] M.P.Hassell (2002). The Spatial and Temporal Dynamics of Host–
parasitoid Interactions, Oxford University Press, Oxford
[45] K. Stankova, A. Abate, M.W K. Sabells (2013). Irreversible prey
diapause as an optimal strategy of a physiologically extended Lokta-
Volterra model, J. Math. Biol. 66:767–794, DOI 10.1007/s00285-012-
0599-5
[46] K. Etebari, R. W. Palfreyman, D. Schlipalius, L. K. Nielsen, R. V. Glatz,
S. Asgari (2011) . Deep sequencing-based transcriptome analysis of
Plutellaxylostella larvae parasitized by Diadegmasemiclausum. BMC
Genomics 12: 446
[47] J.L.Capinera, (2012). Diamondback moth, Featured creatures –
Entomology & Nematology, University of Florida, EENY-119,
Retrieved 23/07/13
[48] D. G.Harcourt (1957). Biology of the diamondback moth,
Plutellamaculipennis (Curt.) (Lepidoptera: Plutellidae), in Eastern
Ontario. II. Life-history, behaviour, and host relationships. Canadian
Entomologist 89: 554-564.
[49] A. Knutson (2005). The Trichogramma Manual: A guide to the use of
Trichogramma for Biological Control with Special Reference to
Augmentative Releases for Control of bollworm and Budworm in
Cotton. (Texas Agricultural Extension Service). 1-42
[50] A. Knutson (1998). The Trichogrammamanual: a guide to the use of
Trichogrammafor biological control with species reference to
augmentative releases for control of bollworm and budworm in cotton.
Publ. No. B–6071. Texas Agric. Ext. Serv., Texas A&M Univ.Res. and
Ext. Center, Dallas, TX. A. Knutson (1998). The Trichogramma
manual: a guide to the use of Trichogrammafor biological control with
species reference to augmentative releases for control of bollworm and
budworm in cotton. Publ. No. B–6071. Texas Agric. Ext. Serv., Texas
A&M Univ.Res. and Ext. Center, Dallas, TX.
[51] D. Khatri, Q. Wang, & X.Z. He (2008). Developnment and reproduction
of Diadegmasemiclausum (Hymenotera: Ichneumonidae) on
Diamondback moth (Plutellidae). New Zealand Plant protection. 61;
322-327 and Reproduction of Diadegmasemiclausum, thesis 2011,
Massey University, Palmerston North, New Zealand.
[52] S. Liu, X. Wang, Z. Shi, Z. H. Gebremeskel (2001). The biology of
Diadromus collaris (Hymenoptera: Ichneumonidae), a pupal parasitoid
of Plutella xylostella (Lepidoptera: Plutellidae), and its interactions with
Oomyzus sokolowskii (Hymenoptera: Eulophidae). Bulletin of
Entomological Research. 91(6):461-69. http://www.ncbi.nlm.nih.gov/
pubmed/11818041retrieved 15/07/13
[53] H. E. Z. Tonnang, L.V.Nedorezov, J.O. Owino, H.Ochanda, B. Lo
(2010). Host–parasitoid population density prediction using artificial
neural networks: diamondback moth and its natural enemies,
Agricultural and Forest Entomology. 12, 233-242.
[54] A.M. Sheltonand J. T. Andaloro (1982). Effect of lepidopterous larval
populations on processed cabbage grades. J. Econ. Entomol. 75: 141-
143.
[55] D. Khatri (2011) . Reproduction of Diadegmasemiclausum, MSc thesis
2011, Massey University, Palmerston North, New Zealand
[56] D. C.Lloyd (1940). Host Selection by Hymenopterous Parasites of the
Moth Plutellamaculipennis Curtis. Proc. Roy. Soc. Lond., Ser. B, no.
853, vol. cxxviii, pp. 451–484.
[57] C. Chatfield, statistics for technology: a course in applied statistics, third
edition (Revised) (1992) Chapman & Hall, London, ISBN 0-412-25340-
2: pp. 327-330
[58] B. Ostle, K. V. Turner, Jr., C.R. Hicks, & G. W. McElrath, Engineering
Statiatics, the Industrial Experience, Duxbury Press, United State of
America, (1996). ISBN 0-534-26538-3: pg. 161-165.
[59] W. A. Hoffmann, H. Poorter (2002). Avoiding Bias in Calculations of
Relative Growth Rate. Annals of Botany 90 (1): 37.
DOI:10.1093/aob/mcf140
[60] E. K. Fehlberg, (1969). Runge-Kutta-Formeln fünfter and siebenter
Ordnung mit Schrittweiten-Kontrolle, Computing (Arch. Elektron.
Rechnen) 4 1969 93-106.
[61] J. R. Dormand, and P. J. Prince, (1981). High order embedded Runge-
Kutta formulae, J. Comput. Appl. Math. 7 (1981), no.1, 67-75.
[62] J. Butcher (2007). Runge-Kutta methods. Scholarpedia, 2(9):3147.
[63] R. Schreiber (2007). MATLAB. Scholarpedia, 2(7):2929.
[64] F. O. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, P.M. Birch
(2014b)."Biological Control of Taro Scarab Beetle (Papuanauninodis,
Coleoptera: Scarabaeidae) Instars via scoliid and Voria tachinidae”.
International Journal of Applied Biology and Pharmaceutical
Technology, Volume 5, Issue 3, in press, 27th April 2014. July –Sept
2014, ISSN: 0976-4550.
[65] F. O. Faithpraise, C. R. Chatwin, J. Obu, B. OlawaleR. C. D. Young,
P.M. Birch (2014b). Sustainable Control of Anopheles Mosquito
Population. Environment, Ecology & Management, Vol 3(1). 1-19
[66] F. O. Faithpraise, C. R. Chatwin, R. C. D. Young, P.M. Birch (2013b).
Timely Control of Aphis craccivora Using an Automatic Robotic Drone
management system (ARDMS) Technical Report, TR/SU/FF/130617,
17 June 2013, Page 1-19