Power and Delay Optimized Graph Representation for Combinational Logic Circuits

Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.

Harmful Effect of Ambient Ozone on Growth and Productivity of Two Legume Crops Visia Faba, and Pisum sativum in Riyadh City, K.S.A.

Ozone (O3) is considered as one of the most phytotoxic pollutants with deleterious effects on living and non living components of Ecosystems. It reduces growth and yield of many crops as well as alters the physiology and crop quality. The present study described series of experiments to investigate the effects of ambient O3 at different locations with different ambient levels of O3 depending on proximity to pollutant source and ranged between 17 ppb/h in control experiment to 112 ppb/h in industrial area respectively. The ambient levels in other three locations (King Saud University botanical garden, King Fahd Rd, and Almanakh Garden) were 61,61,77 ppb/h respectively. Tow legume crops species (vicia vaba L ; and Pisum sativum) differ in their phenology and sensitivity were used. The results showed a significant negative effect to ozone on morphology, number of injured leaves, growth and productivity with a difference in the degree of response depending on the plant type. Visia Faba showed sensitivity to ozone to number and leaf area and the degree of injury leaves 3, pisum sativum show higher sensitivity for the gas for degree of injury 1,The relative growth rate and seed weight, it turns out there is no significant difference between the two plants in plant height and number of seeds.

Effect of Calcination Temperature and MgO Crystallite Size on MgO/TiO2 Catalyst System for Soybean Transesterification

The effect of calcination temperature and MgO crystallite sizes on the structure and catalytic performance of TiO2 supported nano-MgO catalyst for the trans-esterification of soybean oil has been studied. The catalyst has been prepared by deposition precipitation method, characterised by XRD and FTIR and tested in an autoclave at 225oC. The soybean oil conversion after 15 minutes of the trans-esterification reaction increased when the calcination temperature was increased from 500 to 600oC and decreased with further increase in calcination temperature. Some glycerolysis activity was also detected on catalysts calcined at 600 and 700oC after 45 minutes of reaction. The trans-esterification reaction rate increased with the decrease in MgO crystallite size for the first 30 min.

Dempster-Shafer's Approach for Autonomous Virtual Agent Navigation in Virtual Environments

This paper presents a solution for the behavioural animation of autonomous virtual agent navigation in virtual environments. We focus on using Dempster-Shafer-s Theory of Evidence in developing visual sensor for virtual agent. The role of the visual sensor is to capture the information about the virtual environment or identifie which part of an obstacle can be seen from the position of the virtual agent. This information is require for vitual agent to coordinate navigation in virtual environment. The virual agent uses fuzzy controller as a navigation system and Fuzzy α - level for the action selection method. The result clearly demonstrates the path produced is reasonably smooth even though there is some sharp turn and also still not diverted too far from the potential shortest path. This had indicated the benefit of our method, where more reliable and accurate paths produced during navigation task.

Compressive Properties of a Synthetic Bone Substitute for Vertebral Cancellous Bone

Transpedicular screw fixation in spinal fractures, degenerative changes, or deformities is a well-established procedure. However, important rate of fixation failure due to screw bending, loosening, or pullout are still reported particularly in weak bone stock in osteoporosis. To overcome the problem, mechanism of failure has to be fully investigated in vitro. Post-mortem human subjects are less accessible and animal cadavers comprise limitations due to different geometry and mechanical properties. Therefore, the development of a synthetic model mimicking the realistic human vertebra is highly demanded. A bone surrogate, composed of Polyurethane (PU) foam analogous to cancellous bone porous structure, was tested for 3 different densities in this study. The mechanical properties were investigated under uniaxial compression test by minimizing the end artifacts on specimens. The results indicated that PU foam of 0.32 g.cm-3 density has comparable mechanical properties to human cancellous bone in terms of young-s modulus and yield strength. Therefore, the obtained information can be considered as primary step for developing a realistic cancellous bone of human vertebral body. Further evaluations are also recommended for other density groups.

Public Transport Prospective of People with Reduced Mobility in Hungary

To comply with the international human right legislation concerning the freedom of movement, transport systems are required to be made accessible in order that all citizens, regardless of their physical condition, have equal possibilities to use them. In Hungary, apparently there is a considerable default in the improvement of accessible public transport. This study is aiming to overview the current Hungarian situation and to reveal the reasons of the deficiency. The result shows that in spite of the relatively favourable juridical background linked to the accessibility needs and to the rights of persons with disabilities there is a strong delay in putting all in practice in the field of public transport. Its main reason is the lack of financial resource and referring to this the lack of creating mandatory regulations. In addition to this the proprietary rights related to public transport are also variable, which also limits the improvement possibilities. Consequently, first of all an accurate and detailed regulatory procedure is expected to change the present unfavourable situation and to create the conditions of the fast realization, which is already behind time.

A Reliable FPGA-based Real-time Optical-flow Estimation

Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.

Status and Requirements of Counter-Cyberterrorism

The number of intrusions and attacks against critical infrastructures and other information networks is increasing rapidly. While there is no identified evidence that terrorist organizations are currently planning a coordinated attack against the vulnerabilities of computer systems and network connected to critical infrastructure, and origins of the indiscriminate cyber attacks that infect computers on network remain largely unknown. The growing trend toward the use of more automated and menacing attack tools has also overwhelmed some of the current methodologies used for tracking cyber attacks. There is an ample possibility that this kind of cyber attacks can be transform to cyberterrorism caused by illegal purposes. Cyberterrorism is a matter of vital importance to national welfare. Therefore, each countries and organizations have to take a proper measure to meet the situation and consider effective legislation about cyberterrorism.

Integrating Computer Games with Mathematics Instruction in Elementary School- An Analysis of Motivation, Achievement, and Pupil-Teacher Interactions

The purpose of this study is to explore the impacts of computer games on the mathematics instruction. First, the research designed and implemented the web-based games according to the content of existing textbook. And the researcher collected and analyzed the information related to the mathematics instruction integrating the computer games. In this study, the researcher focused on the learning motivation of mathematics, mathematics achievement, and pupil-teacher interactions in classroom. The results showed that students under instruction integrating computer games significantly improved in motivation and achievement. The teacher tended to use less direct teaching and provide more time for student-s active learning.

A Web-Based System for Mapping Features into ISO 14649-Compliant Machining Workingsteps

The rapid development of manufacturing and information systems has caused significant changes in manufacturing environments in recent decades. Mass production has given way to flexible manufacturing systems, in which an important characteristic is customized or "on demand" production. In this scenario, the seamless and without gaps information flow becomes a key factor for success of enterprises. In this paper we present a framework to support the mapping of features into machining workingsteps compliant with the ISO 14649 standard (known as STEP-NC). The system determines how the features can be made with the available manufacturing resources. Examples of the mapping method are presented for features such as a pocket with a general surface.

Learning Human-Like Color Categorization through Interaction

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Bullies and Their Mothers: Who Influence Whom?

Even though most researchers would agree that in symbiotic relationships, like the one between parent and child, influences become reciprocal over time, empirical evidence supporting this claim is limited. The aim of the current study was to develop and test a model describing the reciprocal influence between characteristics of the parent-child relationship, such as closeness and conflict, and the child-s bullying and victimization experiences at school. The study used data from the longitudinal Study of Early Child-Care, conducted by the National Institute of Child Health and Human Development. The participants were dyads of early adolescents (5th and 6th graders during the two data collection waves) and their mothers (N=1364). Supporting our hypothesis, the findings suggested a reciprocal association between bullying and positive parenting, although this association was only significant for boys. Victimization and positive parenting were not significantly interrelated.

Theoretical Analysis of a Crossed-Electrode 2D Array for 3D Imaging

Planar systems of electrodes arranged on both sides of dielectric piezoelectric layer are applied in numerous transducers. They are capable of electronic beam-steering of generated wave both in azimuth and elevation. The wave-beam control is achieved by addressable driving of two-dimensional transducer through proper voltage supply of electrodes on opposite surfaces of the layer. In this paper a semi-analytical method of analysis of the considered transducer is proposed, which is a generalization of the well-known BIS-expansion method. It was earlier exploited with great success in the theory of interdigital transducers of surface acoustic waves, theory of elastic wave scattering by cracks and certain advanced electrostatic problems. The corresponding nontrivial electrostatic problem is formulated and solved numerically.

Watermark Bit Rate in Diverse Signal Domains

A study of the obtainable watermark data rate for information hiding algorithms is presented in this paper. As the perceptual entropy for wideband monophonic audio signals is in the range of four to five bits per sample, a significant amount of additional information can be inserted into signal without causing any perceptual distortion. Experimental results showed that transform domain watermark embedding outperforms considerably watermark embedding in time domain and that signal decompositions with a high gain of transform coding, like the wavelet transform, are the most suitable for high data rate information hiding. Keywords?Digital watermarking, information hiding, audio watermarking, watermark data rate.

A Traffic Simulation Package Based on Travel Demand

In this paper we propose a new traffic simulation package, TDMSim, which supports both macroscopic and microscopic simulation on free-flowing and regulated traffic systems. Both simulators are based on travel demands, which specify the numbers of vehicles departing from origins to arrive at different destinations. The microscopic simulator implements the carfollowing model given the pre-defined routes of the vehicles but also supports the rerouting of vehicles. We also propose a macroscopic simulator which is built in integration with the microscopic simulator to allow the simulation to be scaled for larger networks without sacrificing the precision achievable through the microscopic simulator. The macroscopic simulator also enables the reuse of previous simulation results when simulating traffic on the same networks at later time. Validations have been conducted to show the correctness of both simulators.

Evaluation of Sensitometric Properties of Radiographic Films at Different Processing Solutions

The aim of this study was to compare the sensitometric properties of commonly used radiographic films processed with chemical solutions in different workload hospitals. The effect of different processing conditions on induced densities on radiologic films was investigated. Two accessible double emulsions Fuji and Kodak films were exposed with 11-step wedge and processed with Champion and CPAC processing solutions. The mentioned films provided in both workloads centers, high and low. Our findings displays that the speed and contrast of Kodak filmscreen in both work load (high and low) is higher than Fuji filmscreen for both processing solutions. However there was significant differences in films contrast for both workloads when CPAC solution had been used (p=0.000 and 0.028). The results showed base plus fog density for Kodak film was lower than Fuji. Generally Champion processing solution caused more speed and contrast for investigated films in different conditions and there was significant differences in 95% confidence level between two used processing solutions (p=0.01). Low base plus fog density for Kodak films provide more visibility and accuracy and higher contrast results in using lower exposure factors to obtain better quality in resulting radiographs. In this study we found an economic advantages since Champion solution and Kodak film are used while it makes lower patient dose. Thus, in a radiologic facility any change in film processor/processing cycle or chemistry should be carefully investigated before radiological procedures of patients are acquired.

Digital Hypertexts vs. Traditional Books: An Inquiry into Non-Linearity

The current study begins with an awareness that today-s media environment is characterized by technological development and a new way of reading caused by the introduction of the Internet. The researcher conducted a meta analysis framed within Technological Determinism to investigate the process of hypertext reading, its differences from linear reading and the effects such differences can have on people-s ways of mentally structuring their world. The relationship between literacy and the comprehension achieved by reading hypertexts is also investigated. The results show hypertexts are not always user friendly. People experience hyperlinks as interruptions that distract their attention generating comprehension and disorientation. On one hand hypertextual jumping reading generates interruptions that finally make people lose their concentration. On the other hand hypertexts fascinate people who would rather read a document in such a format even though the outcome is often frustrating and affects their ability to elaborate and retain information.

Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

GeoSEMA: A Modelling Platform, Emerging “GeoSpatial-based Evolutionary and Mobile Agents“

Spatial and mobile computing evolves. This paper describes a smart modeling platform called “GeoSEMA". This approach tends to model multidimensional GeoSpatial Evolutionary and Mobile Agents. Instead of 3D and location-based issues, there are some other dimensions that may characterize spatial agents, e.g. discrete-continuous time, agent behaviors. GeoSEMA is seen as a devoted design pattern motivating temporal geographic-based applications; it is a firm foundation for multipurpose and multidimensional special-based applications. It deals with multipurpose smart objects (buildings, shapes, missiles, etc.) by stimulating geospatial agents. Formally, GeoSEMA refers to geospatial, spatio-evolutive and mobile space constituents where a conceptual geospatial space model is given in this paper. In addition to modeling and categorizing geospatial agents, the model incorporates the concept of inter-agents event-based protocols. Finally, a rapid software-architecture prototyping GeoSEMA platform is also given. It will be implemented/ validated in the next phase of our work.

Study on Extraction of Niobium Oxide from Columbite–Tantalite Concentrate

The principal objective of this study is to be able to extract niobium oxide from columbite-tantalite concentrate of Thayet Kon Area in Nay Phi Taw. It is recovered from columbite-tantalite concentrate which contains 19.29 % Nb2O5.The recovery of niobium oxide from columbite-tantalite concentrate can be divided into three main sections, namely, digestion of the concentrate, recovery from the leached solution and precipitation and calcinations. The concentrate was digested with hydrofluoric acid and sulfuric acid. Of the various parameters that effect acidity and time were studied. In the recovery section solvent extraction process using methyl isobutyl ketone was investigated. Ammonium hydroxide was used as a precipitating agent and the precipitate was later calcined. The percentage of niobium oxide is 74%.