Abstraction Hierarchies for Engineering Design

Complex engineering design problems consist of numerous factors of varying criticalities. Considering fundamental features of design and inferior details alike will result in an extensive waste of time and effort. Design parameters should be introduced gradually as appropriate based on their significance relevant to the problem context. This motivates the representation of design parameters at multiple levels of an abstraction hierarchy. However, developing abstraction hierarchies is an area that is not well understood. Our research proposes a novel hierarchical abstraction methodology to plan effective engineering designs and processes. It provides a theoretically sound foundation to represent, abstract and stratify engineering design parameters and tasks according to causality and criticality. The methodology creates abstraction hierarchies in a recursive and bottom-up approach that guarantees no backtracking across any of the abstraction levels. The methodology consists of three main phases, representation, abstraction, and layering to multiple hierarchical levels. The effectiveness of the developed methodology is demonstrated by a design problem.

Selective Transverse Modes in a Diode End- Pumped Nd:Yag Pulsed Laser

The output beam quality of multi transverse modes of laser, are relatively poor. In order to obtain better beam quality, one may use an aperture inside the laser resonator. In this case, various transverse modes can be selected. We have selected various transverse modes both by simulation and doing experiment. By inserting a circular aperture inside the diode end-pumped Nd:YAG pulsed laser resonator, we have obtained 00 TEM , 01 TEM , 20 TEM and have studied which parameters, can change the mode shape. Then, we have determined the beam quality factor of TEM00 gaussian mode.

Extended Dynamic Source Routing Protocol for the Non Co-Operating Nodes in Mobile Adhoc Networks

In this paper, a new approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate in an ad hoc environment. The extended DSR protocol is tested under different scenarios by varying the number of malicious nodes and node moving speed. It is also tested varying the number of nodes in simulation used. The result indicates the achieved throughput by extended DSR is greater than the standard DSR and indicates the percentage of malicious drops over total drops are less in the case of extended DSR than the standard DSR.

Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Where has All the Physical Education Gone? Results of a Generalist Primary Schools Teachers- Survey on Teaching Physical Education

Concerns about low levels of children-s physical activity and motor skill development, prompted the Ministry of Education to trial a physical activity pilot project (PAPP) in 16 New Zealand primary schools. The project comprised professional development and training in physical education for lead teachers and introduced four physical activity coordinators to liaise with and increase physical activity opportunities in the pilot schools. A survey of generalist teachers (128 baseline, 155 post-intervention) from these schools looked at timetabled physical activity sessions and issues related to teaching physical education. The authors calculated means and standard deviations of data relating to timetabled PE sessions and used a one-way analysis of variance to determine significant differences. Results indicated time devoted to physical activity related subjects significantly increased over the course of the intervention. Teacher-s reported improved confidence and competence, which resulted in an improvement in quality physical education delivered more often.

Optimal Facility Layout Problem Solution Using Genetic Algorithm

Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing and service sector. It is an optimization problem on which the main objective is to obtain the efficient locations, arrangement and order of the facilities. In the literature, there are numerous facility layout problem research presented and have used meta-heuristic approaches to achieve optimal facility layout design. This paper presented genetic algorithm to solve facility layout problem; to minimize total cost function. The performance of the proposed approach was verified and compared using problems in the literature.

Probabilistic Modeling of Network-induced Delays in Networked Control Systems

Time varying network induced delays in networked control systems (NCS) are known for degrading control system-s quality of performance (QoP) and causing stability problems. In literature, a control method employing modeling of communication delays as probability distribution, proves to be a better method. This paper focuses on modeling of network induced delays as probability distribution. CAN and MIL-STD-1553B are extensively used to carry periodic control and monitoring data in networked control systems. In literature, methods to estimate only the worst-case delays for these networks are available. In this paper probabilistic network delay model for CAN and MIL-STD-1553B networks are given. A systematic method to estimate values to model parameters from network parameters is given. A method to predict network delay in next cycle based on the present network delay is presented. Effect of active network redundancy and redundancy at node level on network delay and system response-time is also analyzed.

Evaluation of Wavelet Filters for Image Compression

The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.

Independent Component Analysis to Mass Spectra of Aluminium Sulphate

Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.

Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.

An Assessment of Software Process Optimization Compared to International Best Practice in Bangladesh

The challenge for software development house in Bangladesh is to find a path of using minimum process rather than CMMI or ISO type gigantic practice and process area. The small and medium size organization in Bangladesh wants to ensure minimum basic Software Process Improvement (SPI) in day to day operational activities. Perhaps, the basic practices will ensure to realize their company's improvement goals. This paper focuses on the key issues in basic software practices for small and medium size software organizations, who are unable to effort the CMMI, ISO, ITIL etc. compliance certifications. This research also suggests a basic software process practices model for Bangladesh and it will show the mapping of our suggestions with international best practice. In this IT competitive world for software process improvement, Small and medium size software companies that require collaboration and strengthening to transform their current perspective into inseparable global IT scenario. This research performed some investigations and analysis on some projects- life cycle, current good practice, effective approach, reality and pain area of practitioners, etc. We did some reasoning, root cause analysis, comparative analysis of various approach, method, practice and justifications of CMMI and real life. We did avoid reinventing the wheel, where our focus is for minimal practice, which will ensure a dignified satisfaction between organizations and software customer.

The Relationship between Employability and Training

The aim of this paper is to provide an empirical evidence about the effects that the management of continuous training have on employability (or employment stability) in the Spanish labour market. With this purpose a binary logit model with interaction effect is been used. The dependent variable includes two situations of the active workers: continuous and discontinuous employability. To distinguish between them an Employability Index Stability (ESI) was calculated taking into account two factors: time worked and job security. Various aspects of the continuous training and personal workers data are used as independent variables. The data obtained from a survey of a sample of 918 employed have revealed a relationship between the likelihood of continuous employability and continuous training received. The empirical results support the positive and significant relationship between various aspects of the training provided by firms and employability likelihood of the workers, postulate alike from a theoretical point of view.

Biodiesel Production from Waste Chicken Fatbased Sources

Chicken fat was employed as a feedstock for producing of biodiesel by trasesterification reaction with methanol and alkali catalyst (KOH). In this study chicken fat biodiesel with 1.4% free fatty acid, methanol and various amount of potassium hydroxide for 2 hour were studied. The progression of reaction and conversion of triglycerides to methyl ester were checked by IR spectrum method.

An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine

In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.

Simulation of Sample Paths of Non Gaussian Stationary Random Fields

Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt-s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.

Entropy Generation Analysis of Free Convection Film Condensation on a Vertical Ellipsoid with Variable Wall Temperature

This paper aims to perform the second law analysis of thermodynamics on the laminar film condensation of pure saturated vapor flowing in the direction of gravity on an ellipsoid with variable wall temperature. The analysis provides us understanding how the geometric parameter- ellipticity and non-isothermal wall temperature variation amplitude “A." affect entropy generation during film-wise condensation heat transfer process. To understand of which irreversibility involved in this condensation process, we derived an expression for the entropy generation number in terms of ellipticity and A. The result indicates that entropy generation increases with ellipticity. Furthermore, the irreversibility due to finite temperature difference heat transfer dominates over that due to condensate film flow friction and the local entropy generation rate decreases with increasing A in the upper half of ellipsoid. Meanwhile, the local entropy generation rate enhances with A around the rear lower half of ellipsoid.

Medical Negligence Disputes in Malaysia: Resolving through Hazards of Litigation or through Community Responsibilities?

Medical negligence disputes in Malaysia are mainly resolved through litigation by using the tort system. The tort system, being adversarial in nature has subjected parties to litigation hazards such as delay, excessive costs and uncertainty of outcome. The dissatisfaction of the tort system in compensating medically injured victims has created various alternatives to litigation. Amongst them is the implementation of a no-fault compensation system which would allow compensation to be given without the need of proving fault on the medical personnel. Instead, the community now bears the burden of compensating and at the end, promotes collective responsibility. For Malaysia, introducing a no-fault system would provide a tempting solution and may ultimately, achieve justice for the medical injured victims. Nevertheless, such drastic change requires a great deal of consideration to determine the suitability of the system and whether or not it will eventually cater for the needs of the Malaysian population

Characterization of Lactose Consumption during the Biogas Production from Acid Whey by FT-IR Spectroscopy

The consumption of lactose in acid cheese whey anaerobic fermentation process under fed-batch conditions was studied. During fermentation for 100 hours the biogas production (CO2 and CH4) was analyzed online. Among the standard analyses FT-IR spectroscopy was used to follow the consumption of lactose by bacteria. The absorption bands at 990, 894 and 787 cm-1 in the 2nd derivative spectra were shown to be characteristic for lactose and were used to follow the lactose conversion. It was shown that acid cheese whey lactose was converted by bacteria in first 7 hours. In the spectra of 17, 18 and 95 hour fermentation samples lactose was not identified and these results correlated with the HPLC data.

A Systematic Approach for Finding Hamiltonian Cycles with a Prescribed Edge in Crossed Cubes

The crossed cube is one of the most notable variations of hypercube, but some properties of the former are superior to those of the latter. For example, the diameter of the crossed cube is almost the half of that of the hypercube. In this paper, we focus on the problem embedding a Hamiltonian cycle through an arbitrary given edge in the crossed cube. We give necessary and sufficient condition for determining whether a given permutation with n elements over Zn generates a Hamiltonian cycle pattern of the crossed cube. Moreover, we obtain a lower bound for the number of different Hamiltonian cycles passing through a given edge in an n-dimensional crossed cube. Our work extends some recently obtained results.

Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS

This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.