Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku

Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (M. maculata) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (M. maculata) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid.

Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide

Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.

Vapor Phase Transesterification of Dimethyl Malonate with Phenol over Cordierite Honeycomb Coated with Zirconia and Its Modified Forms

The transesterification of dimethyl malonate (DMM) with phenol has been studied in vapour phase over cordierite honeycomb coated with solid acid catalysts such as ZrO2, Mo(VI)/ZrO2 and SO42-/ZrO2. The catalytic materials were prepared honeycomb coated, powder forms, and characterized for their total surface acidity by NH3-TPD and crystalinity by powder XRD methods. Phenyl methyl malonate (PMM) and diphenyl malonate (DPM) were obtained as the reaction products. A good conversion of DMM (up to 82%) of MPM with 95% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 °C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. However, over SO4^2-/ZrO2 catalyst, the yield of DPM was found to be higher. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of Mo(VI) or SO42– ions. Transesterification reactions were also carried out over powder forms of the catalytic materials and the yield of the desired phenyl ester products were compared with that of the HC coated catalytic materials. The solid acids were found to be reusable when used for at least 5 reaction cycles.

Microwave Assisted Solvent-Free Catalytic Transesterification of Glycerol to Glycerol Carbonate

As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varying grades of glycerol, i.e. 70%, 86% and 99% purity, that is obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Amidst the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demonstrated itself as an energy efficient route by achieving 94.2% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.

Kinetic Modeling of Transesterification of Triacetin Using Synthesized Ion Exchange Resin (SIERs)

Strong anion exchange resins with QN+OH-, have the potential to be developed and employed as heterogeneous catalyst for transesterification, as they are chemically stable to leaching of the functional group. Nine different SIERs (SIER1-9) with QN+OH-were prepared by suspension polymerization of vinylbenzyl chloridedivinylbenzene (VBC-DVB) copolymers in the presence of n-heptane (pore-forming agent). The amine group was successfully grafted into the polymeric resin beads through functionalization with trimethylamine. These SIERs are then used as a catalyst for the transesterification of triacetin with methanol. A set of differential equations that represents the Langmuir-Hinshelwood-Hougen- Watson (LHHW) and Eley-Rideal (ER) models for the transesterification reaction were developed. These kinetic models of LHHW and ER were fitted to the experimental data. Overall, the synthesized ion exchange resin-catalyzed reaction were welldescribed by the Eley-Rideal model compared to LHHW models, with sum of square error (SSE) of 0.742 and 0.996, respectively.

Production of Biodiesel from Roasted Chicken Fat and Methanol: Free Catalyst

Transesterification reactions free of catalyst between roasted chicken fat with methanol were carried out in a batch reactor in order to produce biodiesel to temperatures from 120°C to 140°C. Parameters related to the transesterification reactions, including temperature, time and the molar ratio of chicken fat to methanol also investigated. The maximum yield of the reaction was of 98% under conditions of 140°C, 4 h of reaction time and a molar ratio of chicken fat to methanol of 1:31. The biodiesel thus obtained exhibited a viscosity of 6.3 mm2/s and a density of 895.9 kg/m3. The results showed this process can be right choice to produce biodiesel since this process does not use any catalyst. Therefore, the steps of neutralization and washing are avoided, indispensables in the case of the alkaline catalysis.

Biodiesel Production over nano-MgO Supported on Titania

Nano-MgO was successfully deposited on titania using deposition-precipitation method. The catalyst produced was characterised using FTIR, XRD, BET and XRF and its activity was tested on the transesterification reaction of soybean oil to biodiesel. The catalyst activity improved when the reaction temperature was increasedfrom 150 and 225 OC. It was also observed that increasing the reaction time above 1h had no significant benefit on conversion. The stability fixed MgO on TiO2 was investigated using XRF and ICP-OES. It was observed that MgO loss during the reaction was between 0.5-2.3 percent and that there was no correlation between the reaction temperature and the MgO loss.

Used Frying Oil for Biodiesel Production Over Kaolinite as Catalyst

Biodiesel production with used frying by transesterification reaction with methanol, using a commercial kaolinite thermally-activated solid acid catalyst was investigated. The surface area, the average pore diameter and pore volume of the kaolinite catalyst were 10 m2/g, 13.0 nm and 30 mm3/g, respectively. The optimal conditions for the transesterification reaction were determined to be oil/methanol, in a molar ratio 1:31, temperature 160 ºC and catalyst concentration of 3% (w/w). The yield of fatty acids methyl esters (FAME) was 92.4% after 2 h of reaction. This method of preparation of biodiesel can be a positive alternative for utilizing used frying corn oil for feedstock of biodiesel combined with the inexpensive catalyst.

Biodiesel Production from Waste Chicken Fatbased Sources

Chicken fat was employed as a feedstock for producing of biodiesel by trasesterification reaction with methanol and alkali catalyst (KOH). In this study chicken fat biodiesel with 1.4% free fatty acid, methanol and various amount of potassium hydroxide for 2 hour were studied. The progression of reaction and conversion of triglycerides to methyl ester were checked by IR spectrum method.