Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory

In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.

Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow

Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.

A Transform-Free HOC Scheme for Incompressible Viscous Flow past a Rotationally Oscillating Circular Cylinder

A numerical study is made of laminar, unsteady flow behind a rotationally oscillating circular cylinder using a recently developed higher order compact (HOC) scheme. The stream function vorticity formulation of Navier-Stokes (N-S) equations in cylindrical polar coordinates are considered as the governing equations. The temporal behaviour of vortex formation and relevant streamline patterns of the flow are scrutinized over broad ranges of two externally specified parameters namely dimensionless forced oscillating frequency Sf and dimensionless peak rotation rate αm for the Reynolds-s number Re = 200. Excellent agreements are found both qualitatively and quantitatively with the existing experimental and standard numerical results.

A Novel Reversible Watermarking Method based on Adaptive Thresholding and Companding Technique

Embedding and extraction of a secret information as well as the restoration of the original un-watermarked image is highly desirable in sensitive applications like military, medical, and law enforcement imaging. This paper presents a novel reversible data-hiding method for digital images using integer to integer wavelet transform and companding technique which can embed and recover the secret information as well as can restore the image to its pristine state. The novel method takes advantage of block based watermarking and iterative optimization of threshold for companding which avoids histogram pre and post-processing. Consequently, it reduces the associated overhead usually required in most of the reversible watermarking techniques. As a result, it keeps the distortion small between the marked and the original images. Experimental results show that the proposed method outperforms the existing reversible data hiding schemes reported in the literature.

Integrating Visual Modeling throughout the Computer Science Curriculum

The purposes of this paper are to (1) promote excellence in computer science by suggesting a cohesive innovative approach to fill well documented deficiencies in current computer science education, (2) justify (using the authors- and others anecdotal evidence from both the classroom and the real world) why this approach holds great potential to successfully eliminate the deficiencies, (3) invite other professionals to join the authors in proof of concept research. The authors- experiences, though anecdotal, strongly suggest that a new approach involving visual modeling technologies should allow computer science programs to retain a greater percentage of prospective and declared majors as students become more engaged learners, more successful problem-solvers, and better prepared as programmers. In addition, the graduates of such computer science programs will make greater contributions to the profession as skilled problem-solvers. Instead of wearily rememorizing code as they move to the next course, students will have the problem-solving skills to think and work in more sophisticated and creative ways.

Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions

Evolution of one-dimensional electron system under high-energy-density (HED) conditions is investigated, using the principle of least-action and variational method. In a single-mode modulation model, the amplitude and spatial wavelength of the modulation are chosen to be general coordinates. Equations of motion are derived by considering energy conservation and force balance. Numerical results show that under HED conditions, electron density modulation could exist. Time dependences of amplitude and wavelength are both positively related to the rate of energy input. Besides, initial loading speed has a significant effect on modulation amplitude, while wavelength relies more on loading duration.

A Vehicular Visual Tracking System Incorporating Global Positioning System

Surveillance system is widely used in the traffic monitoring. The deployment of cameras is moving toward a ubiquitous camera (UbiCam) environment. In our previous study, a novel service, called GPS-VT, was firstly proposed by incorporating global positioning system (GPS) and visual tracking techniques for the UbiCam environment. The first prototype is called GODTA (GPS-based Moving Object Detection and Tracking Approach). For a moving person carried GPS-enabled mobile device, he can be tracking when he enters the field-of-view (FOV) of a camera according to his real-time GPS coordinate. In this paper, GPS-VT service is applied to the tracking of vehicles. The moving speed of a vehicle is much faster than a person. It means that the time passing through the FOV is much shorter than that of a person. Besides, the update interval of GPS coordinate is once per second, it is asynchronous with the frame rate of the real-time image. The above asynchronous is worsen by the network transmission delay. These factors are the main challenging to fulfill GPS-VT service on a vehicle.In order to overcome the influence of the above factors, a back-propagation neural network (BPNN) is used to predict the possible lane before the vehicle enters the FOV of a camera. Then, a template matching technique is used for the visual tracking of a target vehicle. The experimental result shows that the target vehicle can be located and tracking successfully. The success location rate of the implemented prototype is higher than that of the previous GODTA.

Simulation and Experimentation of Multibody Mechanical Systems with Clearance Revolute Joints

Clearance in the joints of multibody mechanical systems such as linkage mechanisms and robots is a main source of vibration, and noise of the whole system, and wear of the joints themselves. This clearance is an inevitable matter and cannot be eliminated, since it allows the relative motion between joint components and make them assemblage. This paper presents an experimental verification of the obtained simulation results of a slider – crank mechanism of one clearance revolute joint. The simulation results are obtained with the aid of CAD and dynamic simulation softwares, which is an effective method of simulation multibody systems with clearance joints and have many advantages. The comparison between both simulation and experimental results shows that the simulation results are so close to the experimental ones which proves the accuracy and efficiency of this method of modeling and simulation of mechanical systems with clearance joints.

Need to Implement the Environmental Accounting Education for Sustainable Development: An Overview

Environmental accounting is a recent phenomenon in the modern jurisprudence. It may reflect the corporate governance mechanisms in line with the natural resources and environmental sound management and administration systems in any country of the world. It may be a corporate focused on the improving of the environmental quality. But it is often identified that it is ignored due to some reasons such as unconsciousness, lack of ethical education etc. At present, the world community is very much concerned about the state of the environmental accounting and auditing systems as it bears sustainability on the mother earth for our generations. It is one of the important tools for understanding on the role played by the natural environment in the economy. It provides adequate data which is highlighted both in the contribution of natural resources to economic well-being as well as the costs imposed by pollution or resource degradation. It can play a critical role as on be a part of the many international environmental organizations such as IUCN, WWF, PADELIA, WRI etc.; as they have been taking many initiatives for ensuring the environmental accouting for our competent survivals. The global state actors have already taken some greening accounting initiatives under the forum of the United Nations Division for Sustainable Dedevolpment, the United Nations Statistical Division, the United Nations Conference on Environment and development known as Earth Summit in Rio de Janeiro, Johannesburg Conference 2002 etc. This study will provide an overview of the environmental accounting education consisting of 25 respondents based on the primary and secondary sources.

Groundwater Level Prediction at a Pilot Area in Southeastern Part of the UAE using Shallow Seismic Method

The groundwater is one of the main sources for sustainability in the United Arab Emirates (UAE). Intensive developments in Al-Ain area lead to increase water demand, which consequently reduced the overall groundwater quantity in major aquifers. However, in certain residential areas within Al-Ain, it has been noticed that the groundwater level is rising, for example in Sha-ab Al Askher area. The reasons for the groundwater rising phenomenon are yet to be investigated. In this work, twenty four seismic refraction profiles have been carried out along the study pilot area; as well as field measurement of the groundwater level in a number of available water wells in the area. The processed seismic data indicated the deepest and shallowest groundwater levels are 15m and 2.3 meters respectively. This result is greatly consistent with the proper field measurement of the groundwater level. The minimum detected value may be referred to perched subsurface water which may be associated to the infiltration from the surrounding water bodies such as lakes, and elevated farms. The maximum values indicate the accurate groundwater level within the study area. The findings of this work may be considered as a preliminary help to the decision makers.

Unified, Low-Cost Analysis Framework for the Cycling Situation in Cities

We propose a low-cost uniform analysis framework allowing comparison of the strengths and weaknesses of the bicycling experience within and between cities. A primary component is an expedient, one-page mobility survey from which mode share is calculated. The bicycle mode share of many cities remains unknown, creating a serious barrier for both scientists and policy makers aiming to understand and increase rates of bicycling. Because of its low cost and expedience, this framework could be replicated widely, uniformly filling the data gap. The framework has been applied to 13 Central European cities with success. Data is collected on multiple modes with specific questions regarding both behavior and quality of travel experience. Individual preferences are also collected, examining the conditions under which respondents would change behavior to adopt more sustainable modes (bicycling or public transportation). A broad analysis opportunity results, intended to inform policy choices.

Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks

Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.

On the Factors Influencing the Competitiveness of Chinese Service Trade after Entering WTO

Service trade is an important force of influencing economic development. A review on the related literatures is done firstly. Then through the construction of a Diamond Model, the main factors which influence the competitiveness of Chinese service trade are determined. With three competitiveness indexes served as the reference series respectively, the influencing factors served as the comparable series, three grey incidence models are then built up to conduct an empirical analysis on the main factors influencing the competitiveness of service trade after China entering WTO. The result indicates that urbanization level, open degree of service industry and foreign direct investment have larger impacts on Chinese service trade competitiveness, followed in turn by GDP in service industry and human capital, while commodity trade has the minimum impact. Further discussion provides train of thought for the upgrade of Chinese service trade competitiveness.

Social Networks and Absorptive Capacity

The resource-based view of the firm regards knowledge as one of the most important organizational assets and a key strategic resource that contributes unique value to organizations. The acquisition, absorption and internalization of external knowledge are central to an organization-s innovative capabilities. This ability to evaluate, acquire and integrate new knowledge from its environment is referred to as a firm-s absorptive capacity (AC). This research in progress paper explores the link between interorganizational Social Networks (SNs) and a firm-s Absorptive Capacity (AC). Based on an in-depth literature survey of both concepts, four propositions are proposed that explain the link between AC and SNs. These propositions suggest that SNs are key to a firm-s AC. A qualitative research method is proposed to test the set of propositions in the next stage of this research.

Using Mixtures of Waste Frying Oil and Pork Lard to Produce Biodiesel

Studying alternative raw materials for biodiesel production is of major importance. The use of mixtures with incorporation of wastes is an environmental friendly alternative and might reduce biodiesel production costs. The objective of the present work was: (i) to study biodiesel production using waste frying oil mixed with pork lard and (ii) to understand how mixture composition influences biodiesel quality. Biodiesel was produced by transesterification and quality was evaluated through determination of several parameters according to EN 14214. The weight fraction of lard in the mixture varied from 0 to 1 in 0.2 intervals. Biodiesel production yields varied from 81.7 to 88.0 (wt%), the lowest yields being the ones obtained using waste frying oil and lard alone as raw materials. The obtained products fulfilled most of the determined quality specifications according to European biodiesel quality standard EN 14214. Minimum purity (96.5 wt%) was closely obtained when waste frying oil was used alone and when 0.2% of lard was incorporated in the raw material (96.3 wt%); however, it ranged from 93.9 to 96.3 (wt%) being always close to the limit. From the evaluation of the influence of mixture composition in biodiesel quality, it was possible to establish a model to be used for predicting some parameters of biodiesel resulting from mixtures of waste frying oil with lard when different lard contents are used.

Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

A Two-Step Approach for Tree-structured XPath Query Reduction

XML data consists of a very flexible tree-structure which makes it difficult to support the storing and retrieving of XML data. The node numbering scheme is one of the most popular approaches to store XML in relational databases. Together with the node numbering storage scheme, structural joins can be used to efficiently process the hierarchical relationships in XML. However, in order to process a tree-structured XPath query containing several hierarchical relationships and conditional sentences on XML data, many structural joins need to be carried out, which results in a high query execution cost. This paper introduces mechanisms to reduce the XPath queries including branch nodes into a much more efficient form with less numbers of structural joins. A two step approach is proposed. The first step merges duplicate nodes in the tree-structured query and the second step divides the query into sub-queries, shortens the paths and then merges the sub-queries back together. The proposed approach can highly contribute to the efficient execution of XML queries. Experimental results show that the proposed scheme can reduce the query execution cost by up to an order of magnitude of the original execution cost.

Geometric Operators in the Selection of Human Resources

We study the possibility of using geometric operators in the selection of human resources. We develop three new methods that use the ordered weighted geometric (OWG) operator in different indexes used for the selection of human resources. The objective of these models is to manipulate the neutrality of the old methods so the decision maker is able to select human resources according to his particular attitude. In order to develop these models, first a short revision of the OWG operator is developed. Second, we briefly explain the general process for the selection of human resources. Then, we develop the three new indexes. They will use the OWG operator in the Hamming distance, in the adequacy coefficient and in the index of maximum and minimum level. Finally, an illustrative example about the new approach is given.

Beta-spline Surface Fitting to Multi-slice Images

Beta-spline is built on G2 continuity which guarantees smoothness of generated curves and surfaces using it. This curve is preferred to be used in object design rather than reconstruction. This study however, employs the Beta-spline in reconstructing a 3- dimensional G2 image of the Stanford Rabbit. The original data consists of multi-slice binary images of the rabbit. The result is then compared with related works using other techniques.