On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Predicting Protein Function using Decision Tree

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

Blast Induced Ground Shock Effects on Pile Foundations

Due to increased number of terrorist attacks in recent years, loads induced by explosions need to be incorporated in building designs. For safer performance of a structure, its foundation should have sufficient strength and stability. Therefore, prior to any reconstruction or rehabilitation of a building subjected to blast, it is important to examine adverse effects on the foundation caused by blast induced ground shocks. This paper evaluates the effects of a buried explosion on a pile foundation. It treats the dynamic response of the pile in saturated sand, using explicit dynamic nonlinear finite element software LS-DYNA. The blast induced wave propagation in the soil and the horizontal deformation of pile are presented and the results are discussed. Further, a parametric study is carried out to evaluate the effect of varying the explosive shape on the pile response. This information can be used to evaluate the vulnerability of piled foundations to credible blast events as well as develop guidance for their design.

“Turkestan Autonomy“ - Legitimate Power of Turkestan

In this article, by means of examination of Bolshevists Turkistanskie Vedomosti" newspaper and “Erikti Oylar Organi" and “Turkistanskyi Vestnik" newspapers which had been published during 1917-1918, the fact that “Turkistan Governorship" established in city of Kokand in November of 1917, within the framework of former tsarist Russia Turkistan general-governorship, was the legal government formed as a requisition of people of Turkistan was proved. An examination of these two newspapers providing information regarding history of “Turkistan Autonomy" but having opposite to each other views makes it possible to obtain valuable data concerning history of autonomy which was inappropriately misrepresented during Soviet period.

Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies

Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.

Mixed Convection Boundary Layer Flows Induced by a Permeable Continuous Surface Stretched with Prescribed Skin Friction

The boundary layer flow and heat transfer on a stretched surface moving with prescribed skin friction is studied for permeable surface. The surface temperature is assumed to vary inversely with the vertical direction x for n = -1. The skin friction at the surface scales as (x-1/2) at m = 0. The constants m and n are the indices of the power law velocity and temperature exponent respectively. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity variation. The effect of various governing parameters, such as the buoyancy parameter λ and the suction/injection parameter fw for air (Pr = 0.72) are studied. The choice of n and m ensures that the used similarity solutions are x independent. The results show that, assisting flow (λ > 0) enhancing the heat transfer coefficient along the surface for any constant value of fw. Furthermore, injection increases the heat transfer coefficient but suction reduces it at constant λ.

A Classification Scheme for Game Input and Output

Computer game industry has experienced exponential growth in recent years. A game is a recreational activity involving one or more players. Game input is information such as data, commands, etc., which is passed to the game system at run time from an external source. Conversely, game outputs are information which are generated by the game system and passed to an external target, but which is not used internally by the game. This paper identifies a new classification scheme for game input and output, which is based on player-s input and output. Using this, relationship table for game input classifier and output classifier is developed.

The Household Behavior on Solid Waste and Wastewater Management in Municipal Area with Cleanliness Policy Determined by Community

The Bangnanglee Sub-district Administrative Office, Thailand had initiated a policy to environmental protection with encouraging household waste management in order to promote civil responsibility for domestic hygienic. This research studied the household behaviors on solid waste and wastewater management. A sample population of 306 families answered a questionnaire. The study showed that, on average, domestic activities had produced 1.93 kilograms of waste per household per day. It has been found that 79% of the households made several attempts to reduce their own amount of waste. 80% of the households stationed their own garbage bins. 71% managed their waste by selling recyclable products. As for the rest of the waste, 51% burned them, while 29% disposed their waste in the nearby public trashcans and other 13% have them buried. As for wastewater, 60% of the households disposed it into the sewage, whereas 30% disposed them right from their elevated house.

Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

Learning User Keystroke Patterns for Authentication

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.

Reliability Optimization for 3G Cellular Access Networks

This paper address the network reliability optimization problem in the optical access network design for the 3G cellular systems. We presents a novel 0-1 integer programming model for designing optical access network topologies comprised of multi-rings with common-edge in order to guarantee always-on services. The results show that the proposed model yields access network topologies with the optimal reliablity and satisfies both network cost limitations and traffic demand requirements.

EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method

The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.

Morphology and Risk Factors for Blunt Aortic Trauma in Car Accidents - An Autopsy Study

Background: Blunt aortic trauma (BAT) includes various morphological changes that occur during deceleration, acceleration and/or body compression in traffic accidents. The various forms of BAT, from limited laceration of the intima to complete transection of the aorta, depends on the force acting on the vessel wall and the tolerance of the aorta to injury. The force depends on the change in velocity, the dynamics of the accident and of the seating position in the car. Tolerance to aortic injury depends on the anatomy, histological structure and pathomorphological alterations due to aging or disease of the aortic wall. An overview of the literature and medical documentation reveals that different terms are used to describe certain forms of BAT, which can lead to misinterpretation of findings or diagnoses. We therefore, propose a classification that would enable uniform systematic screening of all forms of BAT. We have classified BAT into three morphologycal types: TYPE I (intramural), TYPE II (transmural) and TYPE III (multiple) aortic ruptures with appropriate subtypes. Methods: All car accident casualties examined at the Institute of Forensic Medicine from 2001 to 2009 were included in this retrospective study. Autopsy reports were used to determine the occurrence of each morphological type of BAT in deceased drivers, front seat passengers and other passengers in cars and to define the morphology of BAT in relation to the accident dynamics and the age of the fatalities. Results: A total of 391 fatalities in car accidents were included in the study. TYPE I, TYPE II and TYPE III BAT were observed in 10,9%, 55,6% and 33,5%, respectively. The incidence of BAT in drivers, front seat and other passengers was 36,7%, 43,1% and 28,6%, respectively. In frontal collisions, the incidence of BAT was 32,7%, in lateral collisions 54,2%, and in other traffic accidents 29,3%. The average age of fatalities with BAT was 42,8 years and of those without BAT 39,1 years. Conclusion: Identification and early recognition of the risk factors of BAT following a traffic accident is crucial for successful treatment of patients with BAT. Front seat passengers over 50 years of age who have been injured in a lateral collision are the most at risk of BAT.

The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.

Exergy Analysis of Combined Cycle of Air Separation and Natural Gas Liquefaction

This paper presented a novel combined cycle of air separation and natural gas liquefaction. The idea is that natural gas can be liquefied, meanwhile gaseous or liquid nitrogen and oxygen are produced in one combined cryogenic system. Cycle simulation and exergy analysis were performed to evaluate the process and thereby reveal the influence of the crucial parameter, i.e., flow rate ratio through two stages expanders β on heat transfer temperature difference, its distribution and consequent exergy loss. Composite curves for the combined hot streams (feeding natural gas and recycled nitrogen) and the cold stream showed the degree of optimization available in this process if appropriate β was designed. The results indicated that increasing β reduces temperature difference and exergy loss in heat exchange process. However, the maximum limit value of β should be confined in terms of minimum temperature difference proposed in heat exchanger design standard and heat exchanger size. The optimal βopt under different operation conditions corresponding to the required minimum temperature differences was investigated.

Designing the Concrete-Framework Building and Examining its Behavior under the Explosion Load

These Nowadays the explosion of bombs or explosive materials such as gas and oil near or inside the buildings cause some losses in installations and building components. This has made the engineers to make the buildings and their components resistance against the effects of explosion. These activities lead to provide regulations and different methods. The above regulations are mostly focused on the explosion effects resulting from the vehicles around the buildings. Therefore, the explosion resulting from the vehicles outside the buildings will be studied in this research. In the present study, the main goals are to investigate the explosion load effects on the structures located on the piles with the specific quantity of plasticity and observing the permissible response of these structures. The concentrated mass system and the spring with two degree of freedom will be used to study the structural system.

Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images

In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.

Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle

At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.

Using a Trust-Based Environment Key for Mobile Agent Code Protection

Human activities are increasingly based on the use of remote resources and services, and on the interaction between remotely located parties that may know little about each other. Mobile agents must be prepared to execute on different hosts with various environmental security conditions. The aim of this paper is to propose a trust based mechanism to improve the security of mobile agents and allow their execution in various environments. Thus, an adaptive trust mechanism is proposed. It is based on the dynamic interaction between the agent and the environment. Information collected during the interaction enables generation of an environment key. This key informs on the host-s trust degree and permits the mobile agent to adapt its execution. Trust estimation is based on concrete parameters values. Thus, in case of distrust, the source of problem can be located and a mobile agent appropriate behavior can be selected.

Climate Change and Environmental Education: The Application of Concept Map for Representing the Knowledge Complexity of Climate Change

It has formed an essential issue that Climate Change, composed of highly knowledge complexity, reveals its significant impact on human existence. Therefore, specific national policies, some of which present the educational aspects, have been published for overcoming the imperative problem. Accordingly, the study aims to analyze as well as integrate the relationship between Climate Change and environmental education and apply the perspective of concept map to represent the knowledge contents and structures of Climate Change; by doing so, knowledge contents of Climate Change could be represented in an even more comprehensive way and manipulated as the tool for environmental education. The method adapted for this study is knowledge conversion model compounded of the platform for experts and teachers, who were the participants for this study, to cooperate and combine each participant-s standpoints into a complete knowledge framework that is the foundation for structuring the concept map. The result of this research contains the important concepts, the precise propositions and the entire concept map for representing the robust concepts of Climate Change.