Airliner-UAV Flight Formation in Climb Regime

Extreme formation is a theoretical concept of selfsustain flight when a big airliner is followed by a small UAV glider flying in the airliner wake vortex. The paper presents results of a climb analysis with the goal to lift the gliding UAV to airliners cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Afterwards, flight performance of the UAV in a wake vortex is evaluated by analytical methods. Time history of optimal distance between an airliner and the UAV during a climb is determined. The results are encouraging. Therefore available UAV drag margin for electricity generation is figured out for different vortex models.

Effect of UV Radiation to Change the Properties of the Composite PA+GF

The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, microorganisms and other atmospheric factors.

Effects of Roughness Elements on Heat Transfer during Natural Convection

The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behaviors were studied using computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar flow in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2.0 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to maximum decrease in the heat transfer as 7% to 17% respectively compared to smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms and streamlines.

Simulation of the Effect of Sea Water Using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams

The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. Fiber reinforced polymer (FRP) has been developed and applied in many fields civil engineering structures on the new structures and also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance as well as high tensile strength to weight ratio. Compared to the other FRP materials, Glass composed FRP (GFRP) is relatively cheaper. GFRP sheet is applied externally by bonding it on the concrete surface. The studies regarding the application of GFRP sheet have been conducted such as strengthening system, bonding behavior of GFRP sheet including the application as reinforcement in new structures. For application to the structures with direct contact to sea environment, a study regarding the effect of sea water to the bonding capacity of GFRP sheet is important to be clarified. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six month exposed to the sea water.

Modelling of Designing a Conceptual Schema for Multimodal Freight Transportation Information System

Modelling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA–Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. Software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.

Social Business Models: When Profits and Impacts Are Not at Odds

In the last decade the emergence of new social needs as an effect of the economic crisis has stimulated the flourishing of business endeavours characterised by explicit social goals. Social start-ups, social enterprises or Corporate Social Responsibility operations carried out by traditional companies are quintessential examples in this regard. This paper analyses these kinds of initiatives in order to discover the main characteristics of social business models and to provide insights to social entrepreneurs for developing or improving their strategies. The research is conducted through the integration of literature review and case study analysis and, thanks to the recognition of the importance of both profits and social impacts as the key success factors for a social business model, proposes a framework for identifying indicators suitable for measuring the social impacts generated.

Inflating the Public: A Series of Urban Interventions

The Green Urban Lab took the form of public installations that were placed at various locations in four cities in Cyprus. These installations - through which a series of events, activities, workshops and research took place - were the main tools in regenerating a series of urban public spaces in Cyprus. The purpose of this project was to identify issues and opportunities related to public space and to offer guidelines on how design and participatory democracy improvements could strengthen civil society, while raising the quality of the urban public scene. Giant inflatable structures were injected in important urban fragments in order to accommodate series of events. The design and playful installation generated a wide community engagement. The fluid presence of the installations acted as a catalyst for social interaction. They were accessed and viewed effortlessly and surprisingly, creating opportunities to rediscover public spaces.

Development and Validation of Employee Trust Scale: Factor Structure, Reliability and Validity

The aim of this study was to determine the factor structure and psychometric properties (i.e., reliability and convergent validity) of the Employee Trust Scale, a newly created instrument by the researchers. The Employee Trust Scale initially contained 82 items to measure employees’ trust toward their supervisors. A sample of 818 (343 females, 449 males) employees were selected randomly from public and private organization sectors in Kota Kinabalu, Sabah, Malaysia. Their ages ranged from 19 to 67 years old with a mean of 34.55 years old. Their average tenure with their current employer was 11.2 years (s.d. = 7.5 years). The respondents were asked to complete the Employee Trust Scale, as well as a managerial trust questionnaire from Mishra. The exploratory factor analysis on employees’ trust toward their supervisor’s extracted three factors, labeled ‘trustworthiness’ (32 items), ‘position status’ (11 items) and ‘relationship’ (6 items) which accounted for 62.49% of the total variance. Trustworthiness factors were re-categorized into three sub factors: competency (11 items), benevolence (8 items) and integrity (13 items). All factors and sub factors of the scales demonstrated clear reliability with internal consistency of Cronbach’s Alpha above .85. The convergent validity of the Scale was supported by an expected pattern of correlations (positive and significant correlation) between the score of all factors and sub factors of the scale and the score on the managerial trust questionnaire, which measured the same construct. The convergent validity of Employee Trust Scale was further supported by the significant and positive inter-correlation between the factors and sub factors of the scale. The results suggest that the Employee Trust Scale is a reliable and valid measure. However, further studies need to be carried out in other groups of sample as to further validate the Scale.

Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300m/min cutting speed and 1140mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded KType thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Application of Rapid Prototyping to Create Additive Prototype Using Computer System

Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimise the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.

Ferrites of the MeFe2O4 System (Me – Zn, Cu, Cd) and Their Two Faces

The ferrites ZnFe2O4, CdFe2O4 and CuFe2O4 are synthesized in laboratory conditions using ceramic technology. Their homogeneity and structure are proven by X-Ray diffraction analysis and Mössbauer spectroscopy. The synthesized ferrites are subjected to strong acid and high temperature leaching with solutions of H2SO4, HCl and HNO3. The results indicate that the highest degree of leaching of Zn, Cd and Cu from the ferrites is achieved by use of HCl. The charging of five zinc sulfide concentrates was optimized using the criterion of minimal amount of zinc ferrite produced when roasting the concentrates in a fluidized bed. The results obtained are interpreted in terms of the hydrometallurgical zinc production and maximum recovery of zinc, copper and cadmium from initial zinc concentrates after their roasting.

The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

The activation volume of 6082T6 aluminum is investigated at different temperatures for grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increase and decrease with the testing temperature. It was revealed that, increase in strain rate sensitivity led to decrease in activation volume whereas increase in activation volume led to decrease in strain rate sensitivity.

Recycling Motivations and Barriers in Kota Kinabalu, Malaysia

Public participation in recycling domestic waste is still very low in Malaysia. Only 10.5% of solid waste was recycled up to now which is far below than of in developed countries. Therefore, understanding public motivations towards recycling domestic waste are important to improve current recycling rate. Thus, this study attempts to identify what are the possible motivations and hindrances for the public to recycle. Open-ended questions format were administered to 484 people in Kota Kinabalu, Sabah, Malaysia. Two specific questions we asked to explore their general determinants and barriers in practicing recycling: “What motivates you to recycle?” and “What are the barriers you encountered in doing recycling activities?” Thematic was conducted on the open-ended questions in which themes were created with the raw comments. It was found that the underlying recycling motivations are (i) awareness’ towards the environment; (ii) benefits to the society and individual; and (iii) social influence. Non participations are influence by (i) attitudes; (ii) commitment; (iii) facilities; (iv) knowledge; (v) inconvenience; and (vi) enforcement.

Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

The Influence of Forest Management Histories on Dead Wood and Habitat Trees in the Old Growth Forest in Northern Iran

Dead wood and habitat tree such as fallen logs, snags, stumps and cracks and loos bark etc. are regarded as an important ecological component of forests on which many forest dwelling species depend on presence of them within forest ecosystems. Meanwhile its relation to management history in Caspian forest has gone unreported. The aim of research was to compare the amounts of dead wood and habitat trees in the forests with historically different intensities of management, including: forests with the long term implication of management (PS), the short term implication of management (NS) which were compared with semi virgin forest (GS). The number of 405 individual dead and habitat trees were recorded and measured at 109 sampling locations. ANOVA revealed volume of dead tree in the form and decay classes significantly differ within sites and dead volume in the semi virgin forest significantly higher than managed sites. Comparing the amount of dead and habitat tree in three sites showed that, dead tree volume related with management history and significantly differ in three study sites. Meanwhile, frequency of habitat trees was significantly different within sites. The highest amount of habitat trees including cavities, cracks and loose bark and fork split trees was recorded in virgin site and lowest recorded in the sites with the long term implication of management. It can be concluded that forest management cause reduction of the amount of dead and habitat tree specially in a large size, thus managing this forest according to ecological sustainable principles require a commitment to maintaining stand structure that allow, continued generation of dead trees in a full range of size.

Effect of Welding Processes on Tensile Behavior of Aluminum Alloy Joints

Friction stir welding and tungsten inert gas welding techniques were employed to weld armor grade aluminum alloy to investigate the effect of welding processes on tensile behavior of weld joints. Tensile tests, Vicker microhardness tests and optical microscopy were performed on developed weld joints and base metal. Welding process influenced tensile behavior and microstructure of weld joints. Friction stir welded joints showed tensile behavior better than tungsten inert gas weld joints.

Characterization of InGaAsP/InP Quantum Well Lasers

Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.

3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Studying Frame-Resistant Steel Structures under Near Field Ground Motion

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.