Characterization of InGaAsP/InP Quantum Well Lasers

Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.




References:
[1] S. Adachi, “Physical properties of III-V semiconductor compounds”,
1992.
[2] T. P. Pearsall, “InGaAsP Alloy Semiconductors,” 1982.
[3] S. Adachi, “Material Parameters of In1-xGaxAsyP1-y and Related
Binaries,” J. Appl. Phys, vol. 53, No. 12, pp. 8775-8792, Dec. 1982.
[4] T. Makino, “Analytical Formulas for the Optical Gain of Quantum
Wells,” IEEE J. Quantum. Electron., vol. 32, No. 3, pp. 493-501, Mar.
1996.
[5] Melouk, K. Bousbahi, K. Boughanmi, N. Krachai, M.D “Gain
calculation of InGaAsP/InP multi-quantum well lasers” Proceedings the
16th International Conference on Microelectronics, 2004 (ICM 2004);
2004, p589-593.
[6] K. Melouk and Boughanmi, N. “Characterisation of GaN–In xGa1− xN
quantum-well lasers” Applied Physics B: Lasers & Optics; Aug2009,
Vol. 96 Issue 2/3, p465-469.
[7] M. Asada, A. Kameyama, and Y. Suematsu, “Gain and Intervalence
Band Absorption in Quantum-Well Lasers,” IEEE J. Quantum.
Electron., vol. 20, No. 7, pp. 745-753, Jul. 1984.
[8] M. Asada and Y. Suematsu, “Density-Matrix Theory of Semiconductor
Lasers with Relaxation Broadening Model─Gain and Gain-suppression
in Semiconductors Lasers,” IEEE J. Quantum. Electron., vol. 21, No. 5,
pp. 434-442, May. 1985.
[9] M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata, “Anisotropy and
Broadening of Optical Gain in a GaAs/AlGaAs Multiquantum-Well
Laser,” IEEE J. Quantum. Electron., vol. 21, No. 6, pp. 640-645, Jun.
1985.