A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks

The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.

Web-Based Control and Notification for Home Automation Alarm Systems

This paper describes the project and development of a very low-cost and small electronic prototype, especially designed for monitoring and controlling existing home automation alarm systems (intruder, smoke, gas, flood, etc.), via TCP/IP, with a typical web browser. Its use will allow home owners to be immediately alerted and aware when an alarm event occurs, and being also able to interact with their home automation alarm system, disarming, arming and watching event alerts, with a personal wireless Wi-Fi PDA or smartphone logged on to a dedicated predefined web page, and using also a PC or Laptop.

FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity

In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.

Investigating Quality Metrics for Multimedia Traffic in OLSR Routing Protocol

An Ad hoc wireless network comprises of mobile terminals linked and communicating with each other sans the aid of traditional infrastructure. Optimized Link State Protocol (OLSR) is a proactive routing protocol, in which routes are discovered/updated continuously so that they are available when needed. Hello messages generated by a node seeks information about its neighbor and if the latter fails to respond to a specified number of hello messages regulated by neighborhood hold time, the node is forced to assume that the neighbor is not in range. This paper proposes to evaluate OLSR routing protocol in a random mobility network having various neighborhood hold time intervals. The throughput and delivery ratio are also evaluated to learn about its efficiency for multimedia loads.

A Model of Technological Platform for the Knowledge Management Organization

This paper describes an experience of research, development and innovation applied in Industrial Naval at (Science and Technology Corporation for the Development of Shipbuilding Industry, Naval in Colombia (COTECMAR) particularly through processes of research, innovation and technological development, based on theoretical models related to organizational knowledge management, technology management and management of human talent and integration of technology platforms. It seeks ways to facilitate the initial establishment of environments rich in information, knowledge and content-supported collaborative strategies on dynamic processes missionary, seeking further development in the context of research, development and innovation of the Naval Engineering in Colombia, making it a distinct basis for the generation of knowledge assets from COTECMAR. The integration of information and communication technologies, supported on emerging technologies (mobile technologies, wireless, digital content via PDA, and content delivery services on the Web 2.0 and Web 3.0) as a view of the strategic thrusts in any organization facilitates the redefinition of processes for managing information and knowledge, enabling the redesign of workflows, the adaptation of new forms of organization - preferably in networking and support the creation of symbolic-inside-knowledge promotes the development of new skills, knowledge and attitudes of the knowledge worker

A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks

Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.

Performance Analysis of Flooding Attack Prevention Algorithm in MANETs

The lack of any centralized infrastructure in mobile ad hoc networks (MANET) is one of the greatest security concerns in the deployment of wireless networks. Thus communication in MANET functions properly only if the participating nodes cooperate in routing without any malicious intention. However, some of the nodes may be malicious in their behavior, by indulging in flooding attacks on their neighbors. Some others may act malicious by launching active security attacks like denial of service. This paper addresses few related works done on trust evaluation and establishment in ad hoc networks. Related works on flooding attack prevention are reviewed. A new trust approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate and prevent flooding attacks in an ad hoc environment. The performance of the trust algorithm is tested in an ad hoc network implementing the Ad hoc On-demand Distance Vector (AODV) protocol.

Theory of Nanowire Radial p-n-Junction

We have developed an analytic model for the radial pn-junction in a nanowire (NW) core-shell structure utilizing as a new building block in different semiconductor devices. The potential distribution through the p-n-junction is calculated and the analytical expressions are derived to compute the depletion region widths. We show that the widths of space charge layers, surrounding the core, are the functions of core radius, which is the manifestation of so called classical size effect. The relationship between the depletion layer width and the built-in potential in the asymptotes of infinitely large core radius transforms to square-root dependence specific for conventional planar p-n-junctions. The explicit equation is derived to compute the capacitance of radial p-n-junction. The current-voltage behavior is also carefully determined taking into account the “short base" effects.

Emerging Wireless Standards - WiFi, ZigBee and WiMAX

The world of wireless telecommunications is rapidly evolving. Technologies under research and development promise to deliver more services to more users in less time. This paper presents the emerging technologies helping wireless systems grow from where we are today into our visions of the future. This paper will cover the applications and characteristics of emerging wireless technologies: Wireless Local Area Networks (WiFi-802.11n), Wireless Personal Area Networks (ZigBee) and Wireless Metropolitan Area Networks (WiMAX). The purpose of this paper is to explain the impending 802.11n standard and how it will enable WLANs to support emerging media-rich applications. The paper will also detail how 802.11n compares with existing WLAN standards and offer strategies for users considering higher-bandwidth alternatives. The emerging IEEE 802.15.4 (ZigBee) standard aims to provide low data rate wireless communications with high-precision ranging and localization, by employing UWB technologies for a low-power and low cost solution. WiMAX (Worldwide Interoperability for Microwave Access) is a standard for wireless data transmission covering a range similar to cellular phone towers. With high performance in both distance and throughput, WiMAX technology could be a boon to current Internet providers seeking to become the leader of next generation wireless Internet access. This paper also explores how these emerging technologies differ from one another.

Impact of Modeling Different Fading Channels on Wireless MAN Fixed IEEE802.16d OFDM System with Diversity Transmission Technique

Wimax (Worldwide Interoperability for Microwave Access) is a promising technology which can offer high speed data, voice and video service to the customer end, which is presently, dominated by the cable and digital subscriber line (DSL) technologies. The performance assessment of Wimax systems is dealt with. The biggest advantage of Broadband wireless application (BWA) over its wired competitors is its increased capacity and ease of deployment. The aims of this paper are to model and simulate the fixed OFDM IEEE 802.16d physical layer under variant combinations of digital modulation (BPSK, QPSK, and 16-QAM) over diverse combination of fading channels (AWGN, SUIs). Stanford University Interim (SUI) Channel serial was proposed to simulate the fixed broadband wireless access channel environments where IEEE 802.16d is to be deployed. It has six channel models that are grouped into three categories according to three typical different outdoor Terrains, in order to give a comprehensive effect of fading channels on the overall performance of the system.

Study the Effect of Soft Errors on FlexRay-Based Automotive Systems

FlexRay, as a communication protocol for automotive control systems, is developed to fulfill the increasing demand on the electronic control units for implementing systems with higher safety and more comfort. In this work, we study the impact of radiation-induced soft errors on FlexRay-based steer-by-wire system. We injected the soft errors into general purpose register set of FlexRay nodes to identify the most critical registers, the failure modes of the steer-by-wire system, and measure the probability distribution of failure modes when an error occurs in the register file.

Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys

In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.

130 nm CMOS Mixer and VCO for 2.4 GHz Low-power Wireless Personal Area Networks

This paper describes a 2.4 GHz passive switch mixer and a 5/2.5 GHz voltage-controlled negative Gm oscillator (VCO) with an inversion-mode MOS varactor. Both circuits are implemented using a 1P8M 0.13 μm process. The switch mixer has an input referred 1 dB compression point of -3.89 dBm and a conversion gain of -0.96 dB when the local oscillator power is +2.5 dBm. The VCO consumes only 1.75 mW, while drawing 1.45 mA from a 1.2 V supply voltage. In order to reduce the passives size, the VCO natural oscillation frequency is 5 GHz. A clocked CMOS divideby- two circuit is used for frequency division and quadrature phase generation. The VCO has a -109 dBc/Hz phase noise at 1 MHz frequency offset and a 2.35-2.5 GHz tuning range (after the frequency division), thus complying with ZigBee requirements.

Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks

Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.

Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

A Taxonomy of Internal Attacks in Wireless Sensor Network

Developments in communication technologies especially in wireless have enabled the progress of low-cost and lowpower wireless sensor networks (WSNs). The features of such WSN are holding minimal energy, weak computational capabilities, wireless communication and an open-medium nature where sensors are deployed. WSN is underpinned by application driven such as military applications, the health sector, etc. Due to the intrinsic nature of the network and application scenario, WSNs are vulnerable to many attacks externally and internally. In this paper we have focused on the types of internal attacks of WSNs based on OSI model and discussed some security requirements, characterizers and challenges of WSNs, by which to contribute to the WSN-s security research.

A Degraded Practical MIMOME Channel: Issues Insecret Data Communications

In this paper, a Gaussian multiple input multiple output multiple eavesdropper (MIMOME) channel is considered where a transmitter communicates to a receiver in the presence of an eavesdropper. We present a technique for determining the secrecy capacity of the multiple input multiple output (MIMO) channel under Gaussian noise. We transform the degraded MIMOME channel into multiple single input multiple output (SIMO) Gaussian wire-tap channels and then use scalar approach to convert it into two equivalent multiple input single output (MISO) channels. The secrecy capacity model is then developed for the condition where the channel state information (CSI) for main channel only is known to the transmitter. The results show that the secret communication is possible when the eavesdropper channel noise is greater than a cutoff noise level. The outage probability is also analyzed of secrecy capacity is also analyzed. The effect of fading and outage probability is also analyzed.

Performance Evaluation of Qos Parameters in Cognitive Radio Using Genetic Algorithm

The efficient use of available licensed spectrum is becoming more and more critical with increasing demand and usage of the radio spectrum. This paper shows how the use of spectrum as well as dynamic spectrum management can be effectively managed and spectrum allocation schemes in the wireless communication systems be implemented and used, in future. This paper would be an attempt towards better utilization of the spectrum. This research will focus on the decision-making process mainly, with an assumption that the radio environment has already been sensed and the QoS requirements for the application have been specified either by the sensed radio environment or by the secondary user itself. We identify and study the characteristic parameters of Cognitive Radio and use Genetic Algorithm for spectrum allocation. Performance evaluation is done using MATLAB toolboxes.

Performance Analysis of a WiMax/Wi-Fi System Whilst Streaming a Video Conference Application

WiMAX and Wi-Fi are considered as the promising broadband access solutions for wireless MAN’s and LANs, respectively. In the recent works WiMAX is considered suitable as a backhaul service to connect multiple dispersed Wi-Fi ‘hotspots’. Hence a new integrated WiMAX/Wi-Fi architecture has been proposed in literatures. In this paper the performance of an integrated WiMAX/Wi-Fi network has been investigated by streaming a video conference application. The difference in performance between the two protocols is compared with respect to video conferencing. The Heterogeneous network was simulated in the OPNET simulator.

Heating of High-Density Hydrogen by High- Current Arc Radiation

The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.