Building a Service-Centric Business Model in SMEs in the Business-to-Business Context

Building a service-centric business model requires new knowledge and capabilities in companies. This paper enlightens the challenges small and medium sized firms (SMEs) face when developing their service-centric business models. This paper examines the premise for knowledge transfer and capability development required. The objective of this paper is to increase knowledge about SME-s transformation to service-centric business models.This paper reports an action research based case study. The paper provides empirical evidence from three case companies. The empirical data was collected through multiple methods. The findings of the paper are: First, the developed model to analyze the current state in companies. Second, the process of building the service – centric business models. Third, the selection of suitable service development methods. The lack of a holistic understanding on service logic suggests that SMEs need practical and easy to use methods to improve their business

Statistical Description of Wave Interactions in 1D Defect Turbulence

We have investigated statistical properties of the defect turbulence in 1D CGLE wherein many body interaction is involved between local depressing wave (LDW) and local standing wave (LSW). It is shown that the counting number fluctuation of LDW is subject to the sub-Poisson statistics (SUBP). The physical origin of the SUBP can be ascribed to pair extinction of LDWs based on the master equation approach. It is also shown that the probability density function (pdf) of inter-LDW distance can be identified by the hyper gamma distribution. Assuming a superstatistics of the exponential distribution (Poisson configuration), a plausible explanation is given. It is shown further that the pdf of amplitude of LDW has a fattail. The underlying mechanism of its fluctuation is examined by introducing a generalized fractional Poisson configuration.

Secondary Ion Mass Spectrometry of Proteins

The adsorption of bovine serum albumin (BSA), immunoglobulin G (IgG) and fibrinogen (Fgn) on fluorinated selfassembled monolayers have been studied using time of flight secondary ion mass spectrometry (ToF-SIMS) and Spectroscopic Ellipsometry (SE). The objective of the work has to establish the utility of ToF-SIMS for the determination of the amount of protein adsorbed on the surface. Quantification of surface adsorbed proteins was carried out using SE and a good correlation between ToF-SIMS results and SE was achieved. The surface distribution of proteins were also analysed using Atomic Force Microscopy (AFM). We show that the surface distribution of proteins strongly affect the ToFSIMS results.

Optimal Controller with Backstepping and BELBIC for Single-Link Flexible Manipulator

In this paper, backstepping method (BM) is proposed for a single-link flexible mechanical manipulator. In each step of this method a positive value is obtained. Selections of the gain factor values are very important because controller will have different behavior for each different set of values. Improper selection of these gains can lead to instability of the system. In order to choose proper values for gains BELBIC method has been used in this work. Finally, to prove the efficiency of this method, the obtained results of proposed model are compared with robust controller one. Results show that the combination of backstepping and BELBIC that is presented here, can stabilized the system with higher speed, shorter settling time and lower overshoot in than robust controller.

Scheduling for a Reconfigurable Manufacturing System with Multiple Process Plans and Limited Pallets/Fixtures

A reconfigurable manufacturing system (RMS) is an advanced system designed at the outset for rapid changes in its hardware and software components in order to quickly adjust its production capacity and functionally. Among various operational decisions, this study considers the scheduling problem that determines the input sequence and schedule at the same time for a given set of parts. In particular, we consider the practical constraints that the numbers of pallets/fixtures are limited and hence a part can be released into the system only when the fixture required for the part is available. To solve the integrated input sequencing and scheduling problems, we suggest a priority rule based approach in which the two sub-problems are solved using a combination of priority rules. To show the effectiveness of various rule combinations, a simulation experiment was done on the data for a real RMS, and the test results are reported.

Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters

In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method.

Application of Double Side Approach Method on Super Elliptical Winkler Plate

In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use.

Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel

Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.

Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.

EDULOGIC+ - Knowledge Management through Data Analysis in Education

This paper outlines the application of Knowledge Management (KM) principles in the context of Educational institutions. The paper caters to the needs of the engineering institutions for imparting quality education by delineating the instruction delivery process in a highly structured, controlled and quantified manner. This is done using a software tool EDULOGIC+. The central idea has been based on the engineering education pattern in Indian Universities/ Institutions. The data, contents and results produced over contiguous years build the necessary ground for managing the related accumulated knowledge. Application of KM has been explained using certain examples of data analysis and knowledge extraction.

Does Training in the Use of a Magnifier Improve Efficiency?

Provision of optical devices without proper instruction and training may cause frustration resulting in rejection or incorrect use of the magnifiers. However training in the use of magnifiers increases the cost of providing these devices. This study compared the efficacy of providing instruction alone and instruction plus training in the use of magnifiers. 24 participants randomly assigned to two groups. 15 received instruction and training and 9 received instruction only. Repeated measures of print size and reading speed were performed at pre, post training and follow up. Print size decreased in both groups between pre and post training maintained at follow up. Reading speed increased in both groups over time with the training group demonstrating more rapid improvement. Whilst overall outcomes were similar, training decreased the time required to increase reading speed supporting the use of training for increased efficiency. A cost effective form of training is suggested.

Improved Body Mass Index Classification for Football Code Masters Athletes, A Comparison to the Australian National Population

Thousands of masters athletes participate quadrennially in the World Masters Games (WMG), yet this cohort of athletes remains proportionately under-investigated. Due to a growing global obesity pandemic in context of benefits of physical activity across the lifespan, the prevalence of obesity in this unique population was of particular interest. Data gathered on a sub-sample of 535 football code athletes, aged 31-72 yrs ( =47.4, s =±7.1), competing at the Sydney World Masters Games (2009) demonstrated a significantly (p

The Problems of Legal Regulation of Intellectual Property Rights in Innovation Activities in Russia (Institutional Approach)

Part IV of the Civil Code of the Russian Federation dedicated to legal regulation of Intellectual property rights came into force in 2008. It is a first attempt of codification in Intellectual property sphere in Russia. That is why a lot of new norms appeared. The main problem of the Russian Civil Code (part IV) is that many rules (norms of Law) contradict the norms of International Intellectual property Law (i.e. protection of inventions, creations, ideas, know-how, trade secrets, innovations). Intellectual property rights protect innovations and creations and reward innovative and creative activity. Intellectual property rights are international in character and in that respect they fit in rather well with the economic reality of the global economy. Inventors prefer not to take out a patent for inventions because it is a very difficult procedure, it takes a lot of time and is very expensive. That-s why they try to protect their inventions as ideas, know-how, confidential information. An idea is the main element of any object of Intellectual property (creation, invention, innovation, know-how, etc.). But ideas are not protected by Civil Code of Russian Federation. The aim of the paper is to reveal the main problems of legal regulation of Intellectual property in Russia and to suggest possible solutions. The authors of this paper have raised these essential issues through different activities. Through the panel survey, questionnaires which were spread among the participants of intellectual activities the main problems of implementation of innovations, protecting of the ideas and know-how were identified. The implementation of research results will help to solve economic and legal problems of innovations, transfer of innovations and intellectual property.1

Utilization of Laser-Ablation Based Analytical Methods for Obtaining Complete Chemical Information of Algae

Themain goal of this article is to find efficient methods for elemental and molecular analysis of living microorganisms (algae) under defined environmental conditions and cultivation processes. The overall knowledge of chemical composition is obtained utilizing laser-based techniques, Laser- Induced Breakdown Spectroscopy (LIBS) for acquiring information about elemental composition and Raman Spectroscopy for gaining molecular information, respectively. Algal cells were suspended in liquid media and characterized using their spectra. Results obtained employing LIBS and Raman Spectroscopy techniques will help to elucidate algae biology (nutrition dynamics depending on cultivation conditions) and to identify algal strains, which have the potential for applications in metal-ion absorption (bioremediation) and biofuel industry. Moreover, bioremediation can be readily combined with production of 3rd generation biofuels. In order to use algae for efficient fuel production, the optimal cultivation parameters have to be determinedleading to high production of oil in selected cellswithout significant inhibition of the photosynthetic activity and the culture growth rate, e.g. it is necessary to distinguish conditions for algal strain containing high amount of higher unsaturated fatty acids. Measurements employing LIBS and Raman Spectroscopy were utilized in order to give information about alga Trachydiscusminutus with emphasis on the amount of the lipid content inside the algal cell and the ability of algae to withdraw nutrients from its environment and bioremediation (elemental composition), respectively. This article can serve as the reference for further efforts in describing complete chemical composition of algal samples employing laserablation techniques.

Study the Efficacies of Green Manure Application as Chickpea Pre Plant

In order to Study the efficacy application of green manure as chickpea pre plant, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in splitsplit plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Interdisciplinary Principles of Field-Like Coordination in the Case of Self-Organized Social Systems1

This interdisciplinary research aims to distinguish universal scale-free and field-like fundamental principles of selforganization observable across many disciplines like computer science, neuroscience, microbiology, social science, etc. Based on these universal principles we provide basic premises and postulates for designing holistic social simulation models. We also introduce pervasive information field (PIF) concept, which serves as a simulation media for contextual information storage, dynamic distribution and organization in social complex networks. PIF concept specifically is targeted for field-like uncoupled and indirect interactions among social agents capable of affecting and perceiving broadcasted contextual information. Proposed approach is expressive enough to represent contextual broadcasted information in a form locally accessible and immediately usable by network agents. This paper gives some prospective vision how system-s resources (tangible and intangible) could be simulated as oscillating processes immersed in the all pervasive information field.

The Relationship between Fugacity and Stress Intensity Factor for Corrosive Environment in Presence of Hydrogen Embrittlement

Hydrogen diffusion is the main problem for corrosion fatigue in corrosive environment. In order to analyze the phenomenon, it is needed to understand their behaviors specially the hydrogen behavior during the diffusion. So, Hydrogen embrittlement and prediction its behavior as a main corrosive part of the fractions, needed to solve combinations of different equations mathematically. The main point to obtain the equation, having knowledge about the source of causing diffusion and running the atoms into materials, called driving force. This is produced by either gradient of electrical or chemical potential. In this work, we consider the gradient of chemical potential to obtain the property equation. In diffusion of atoms, some of them may be trapped but, it could be ignorable in some conditions. According to the phenomenon of hydrogen embrittlement, the thermodynamic and chemical properties of hydrogen are considered to justify and relate them to fracture mechanics. It is very important to get a stress intensity factor by using fugacity as a property of hydrogen or other gases. Although, the diffusive behavior and embrittlement event are common and the same for other gases but, for making it more clear, we describe it for hydrogen. This considering on the definite gas and describing it helps us to understand better the importance of this relation.

Sensor Network Based Emergency Response and Navigation Support Architecture

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

Signing the First Packet in Amortization Scheme for Multicast Stream Authentication

Signature amortization schemes have been introduced for authenticating multicast streams, in which, a single signature is amortized over several packets. The hash value of each packet is computed, some hash values are appended to other packets, forming what is known as hash chain. These schemes divide the stream into blocks, each block is a number of packets, the signature packet in these schemes is either the first or the last packet of the block. Amortization schemes are efficient solutions in terms of computation and communication overhead, specially in real-time environment. The main effictive factor of amortization schemes is it-s hash chain construction. Some studies show that signing the first packet of each block reduces the receiver-s delay and prevents DoS attacks, other studies show that signing the last packet reduces the sender-s delay. To our knowledge, there is no studies that show which is better, to sign the first or the last packet in terms of authentication probability and resistance to packet loss. In th is paper we will introduce another scheme for authenticating multicast streams that is robust against packet loss, reduces the overhead, and prevents the DoS attacks experienced by the receiver in the same time. Our scheme-The Multiple Connected Chain signing the First packet (MCF) is to append the hash values of specific packets to other packets,then append some hashes to the signature packet which is sent as the first packet in the block. This scheme is aspecially efficient in terms of receiver-s delay. We discuss and evaluate the performance of our proposed scheme against those that sign the last packet of the block.

Pattern Recognition of Biological Signals

This paper presents an evolutionary method for designing electronic circuits and numerical methods associated with monitoring systems. The instruments described here have been used in studies of weather and climate changes due to global warming, and also in medical patient supervision. Genetic Programming systems have been used both for designing circuits and sensors, and also for determining sensor parameters. The authors advance the thesis that the software side of such a system should be written in computer languages with a strong mathematical and logic background in order to prevent software obsolescence, and achieve program correctness.