The Study on Mechanical Properties of Graphene Using Molecular Mechanics

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell

A comparison of activity and stability of the as-formed Pt/C, Pt-Co and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single Proton Exchange Membrane (PEM) fuel cell, the Oxygen Reduction Reaction (ORR) activity of the Pt-M/C electrocatalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C > Pt-Co/C > Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electrochemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt- Pd/C was the most stable than the other three electrocatalysts.

Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs Oxidation

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Flocculation on the Treatment of Olive Oil Mill Wastewater: Pretreatment

Currently, continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) are a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, advanced oxidation technologies (Fenton, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarifiedsludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were determined. The variation on electric conductivity reduction percentage (1-8%) was also determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).

Thermo-Mechanical Treatments of Cu-Ti Alloys

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined, and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. The metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most efficient hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as long grain boundaries were responsible for the overaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well known that plate-like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature, a classic Widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Networking the Biggest Challenge in Hybrid Cloud Deployment

Cloud computing has emerged as a promising direction for cost efficient and reliable service delivery across data communication networks. The dynamic location of service facilities and the virtualization of hardware and software elements are stressing the communication networks and protocols, especially when data centres are interconnected through the internet. Although the computing aspects of cloud technologies have been largely investigated, lower attention has been devoted to the networking services without involving IT operating overhead. Cloud computing has enabled elastic and transparent access to infrastructure services without involving IT operating overhead. Virtualization has been a key enabler for cloud computing. While resource virtualization and service abstraction have been widely investigated, networking in cloud remains a difficult puzzle. Even though network has significant role in facilitating hybrid cloud scenarios, it hasn't received much attention in research community until recently. We propose Network as a Service (NaaS), which forms the basis of unifying public and private clouds. In this paper, we identify various challenges in adoption of hybrid cloud. We discuss the design and implementation of a cloud platform.

Handling Complexity of a Complex System Design: Paradigm, Formalism and Transformations

Current systems complexity has reached a degree that requires addressing conception and design issues while taking into account environmental, operational, social, legal and financial aspects. Therefore, one of the main challenges is the way complex systems are specified and designed. The exponential growing effort, cost and time investment of complex systems in modeling phase emphasize the need for a paradigm, a framework and an environment to handle the system model complexity. For that, it is necessary to understand the expectations of the human user of the model and his limits. This paper presents a generic framework for designing complex systems, highlights the requirements a system model needs to fulfill to meet human user expectations, and suggests a graphbased formalism for modeling complex systems. Finally, a set of transformations are defined to handle the model complexity.

Utility Assessment Model for Wireless Technology in Construction

Construction projects are information intensive in nature and involve many activities that are related to each other. Wireless technologies can be used to improve the accuracy and timeliness of data collected from construction sites and shares it with appropriate parties. Nonetheless, the construction industry tends to be conservative and shows hesitation to adopt new technologies. A main concern for owners, contractors or any person in charge on a job site is the cost of the technology in question. Wireless technologies are not cheap. There are a lot of expenses to be taken into consideration, and a study should be completed to make sure that the importance and savings resulting from the usage of this technology is worth the expenses. This research attempts to assess the effectiveness of using the appropriate wireless technologies based on criteria such as performance, reliability, and risk. The assessment is based on a utility function model that breaks down the selection issue into alternatives attribute. Then the attributes are assigned weights and single attributes are measured. Finally, single attribute are combined to develop one single aggregate utility index for each alternative.

Rheological Modeling for Shape-Memory Thermoplastic Polymers

This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.

Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness

Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. Multitudes of methods have been investigated to reduce DOMS. One of the valuable methods to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric with maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three equal groups: Group A (first study group): 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as a prophylactic exercise. Group B (second study group): 20 subjects received maximal isometric contraction on nondominant elbow flexors as a prophylactic exercise. Group C (control group): 20 subjects did not receive any prophylactic exercises. Maximal isometric peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after, and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction produced a greater protective effect against muscle damage induced by maximal eccentric exercise performed 2 days later.

Impact of Natural Period and Epicentral Distance on Storey Lateral Displacements

The goal of the paper is to highlight the effect of the building design and epicentral distance on the storey lateral displacements, for several reinforced concrete buildings (6, 9 and 12 stories). These structures are subjected to seismic accelerations from the Boumerdes earthquake (Algeria, May 21st, Mw = 6.8). Using the response spectrum method (modal spectral approach), the analysis is performed in both longitudinal and transverse directions. The building design is expressed through the fundamental period and epicentral distance is used to represent the earthquake effect variation on storey lateral displacements and interstory drift for the considered buildings.

Behavior of Engineering Students in Kuwait University

This initial study is concerned with the behavior of engineering students in Kuwait University which became a concern due to the global issues of education in all levels. A survey has been conducted to identify academic and societal issues affecting the engineering student performance. The study is drawing major conclusions with regard to private tutoring and the online availability of textbooks’ solution manuals.

Towards an Understanding of Social Capital in an Online Community of Filipino Music Artists

Cyberspace has become a more viable arena for budding artists to share musical acts through digital forms. The increasing relevance of online communities has attracted scholars from various fields demonstrating its influence on social capital. This paper extends this understanding of social capital among Filipino music artists belonging to the SoundCloud Philippines Facebook Group. The study makes use of various qualitative data obtained from key-informant interviews and participant observation of online and physical encounters, analyzed using the case study approach. Soundcloud Philippines has over seven-hundred members and is composed of Filipino singers, instrumentalists, composers, arrangers, producers, multimedia artists and event managers. Group interactions are a mix of online encounters based on Facebook and SoundCloud and physical encounters through meet-ups and events. Benefits reaped from the community are informational, technical, instrumental, promotional, motivational and social support. Under the guidance of online group administrators, collaborative activities such as music productions, concerts and events transpire. Most conflicts and problems arising are resolved peacefully. Social capital in SoundCloud Philippines is mobilized through recognition, respect and reciprocity.

Design Channel Non-Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC

This paper presents Carrier Sense Multiple Access (CSMA) communication models based on SoC design methodology. Such a model can be used to support the modeling of the complex wireless communication systems. Therefore, the use of such communication model is an important technique in the construction of high-performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP-based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).

Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Interstitial free steels possess better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

Islamic Architecture and Its Challenges

Today architecture has become as a powerful media for introducing cultures to the world, which in turn brings about a change in the global insight, power gaining, investment, and development. Islamic architecture is based on the language of Koran and shows the depth and richness of Islam through the spiritual soul. This is in a way that belief in monotheism and faith in Islamic teachings are manifested as Islam's aesthetic thought in Islamic architecture. Unfortunately, Islamic architecture has been damaged a lot due to the lack of the necessary information, and also successive wars that have overtaken the Moslems as well as the dominance of colonizing counties. Islamic architecture is rooted in the history, culture and civilization of Moslems, but its deficiencies and shortcomings should be removed through systematizing the Islamic architecture researchers. Islamic countries should act in a way that the art of Islamic architecture shows its true place in different architecture eras and makes everybody aware that Islamic architecture has a historical root and is connected eternally to the genuineness, religious art, and Moslems' culture and civilization.

Study on Carbon Nanostructures Influence on Changes in Static Friction Forces

The Chair of Thermal Engineering at Poznan University of Technology has been conducted research works on the possibilities of using carbon nanostructures in energy and mechanics applications for a couple of years. Those studies have provided results in a form of co-operation with foreign research centres, numerous publications and patent applications. Authors of this paper have studied the influence of multi-walled carbon nanostructures on changes in static friction arising when steel surfaces were moved. Tests were made using the original test stand consisting of automatically controlled inclined plane driven by precise stepper motors. Computer program created in the LabView environment was responsible for monitoring of the stand operation, accuracy of measurements and archiving the obtained results. Such a solution enabled to obtain high accuracy and repeatability of all conducted experiments. Tests and analysis of the obtained results allowed us to determine how additional layers of carbon nanostructures influenced on changes of static friction coefficients. At the same time, we analyzed the potential possibilities of applying nanostructures under consideration in mechanics.

Stand Alone Multiple Trough Solar Desalination with Heat Storage

Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipments are typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.