ORR Activity and Stability of Pt-Based Electrocatalysts in PEM Fuel Cell

A comparison of activity and stability of the as-formed Pt/C, Pt-Co and Pt-Pd/C electrocatalysts, prepared by a combined approach of impregnation and seeding, was performed. According to the activity test in a single Proton Exchange Membrane (PEM) fuel cell, the Oxygen Reduction Reaction (ORR) activity of the Pt-M/C electrocatalyst was slightly lower than that of Pt/C. The j0.9 V and E10 mA/cm2 of the as-prepared electrocatalysts increased in the order of Pt/C > Pt-Co/C > Pt-Pd/C. However, in the medium-to-high current density region, Pt-Pd/C exhibited the best performance. With regard to their stability in a 0.5 M H2SO4 electrolyte solution, the electrochemical surface area decreased as the number of rounds of repetitive potential cycling increased due to the dissolution of the metals within the catalyst structure. For long-term measurement, Pt- Pd/C was the most stable than the other three electrocatalysts.




References:
[1] K. Jiao, I.E. Alaefour, X. Li, “Three-dimensional non-isothermal
modeling of carbon monoxide poisoning in high temperature proton
exchange membrane fuel cells with phosphoric acid doped
polybenzimidazole membranes”, Fuel, vol. 90, pp. 568-582, Feb. 2011.
[2] A. Yilanci, I. Dincer, H.K. Ozturk, “Performance analysis of a PEM fuel
cell unit in a solar-hydrogen system”, Int. J. Hydrogen. Energ., Vol. 33,
pp. 7538-7352, Dec. 2008.
[3] J.H. Lin, W.H. Chen, Y.J. Su, T.H. Ko, “Effect of gas diffusion layer
compression on the performance in a proton exchange membrane fuel
cell”, Fuel, vol. 87, pp. 2420-2424, Sep. 2008.
[4] YY. Tang, W. Yuan, M. Pan, Z. Li, G. Chen, Y. Li, “Experimental
investigation of dynamic performance and transient responses of a kWclass
PEM fuel cell stack under various load changes.”, Appl. Energ.,
Vol. 87, pp.1410-1417, Apr. 2010.
[5] X. Zhang, J. Guo, J. Chen, “The parametric optimum analysis of a proton
exchange membrane (PEM fuel cell) and its load matching”, Energy,
Vol. 35, pp. 5294-5299, Dec. 2010.
[6] C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P.
Marques, H. Wang, J. Zhang, “A review of heat-treatment effects on
activity and stability of PEM fuel cell catalysts for oxygen reduction
reaction”, J. Power Source., vol. 173, pp. 891-908, Nov. 2007.
[7] W. Trongchuankij, K. Pruksathorn, M. Hunsom, “Preparation of a high
performance Pt-Co/C electrocatalyst for oxygen reduction in PEM fuel
cell via a combined process of impregnation and seeding”, Appl. Ener.,
88, pp. 974-980, Mar. 2011.
[8] S.S. Kocha, Electrochemical degradation: Electrocatalyst and support
durability, in: Polymer electrolyte fuel cell degradation, M.M. Mench,
E.C. Kumbur, T. Nejat Veziroglu., Ed., Elsevier 2012.
[9] N.A. Vante, H. Tributsch, “Energy conversion catalysis using
semiconducting transition metal cluster compounds”, Nature, vol. 323,
pp. 431-432, Oct.1986.
[10] J.J.L. Fernández, V. Raghuveer, A. Manthiram, A.J. Bard, “Pd-Ti and
Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen
reduction in proton exchange membrane fuel cells”, J. Am. Chem. Soc.,
vol. 127, pp.13100-13101, Aug. 2005.
[11] V.S. Bagotsky, Fuel cells, Problems and Solution, Chapter 12, John
Wiley & Sons, Inc. 2009.
[12] F. Yongjun, A.V. Nicolas, “Nonprecious metal catalysts for the
molecular oxygen-reduction reaction”, Phys. Status Solidi (b), vol. 245,
pp. 1792-1806, Aug. 2008.
[13] L. Zhang, J. Zhang, D.P. Wilkinson, H. Wang, “Progress in preparation
of non-noble electrocatalysts for PEM fuel cell reactions”, J. Power.
Sourc., vol. 156, pp. 171-182, Jun. 2006.
[14] D. Baresel, W. Sarholz, P. Scharner, J. Schmitz, “Transition metal
chalcogenides as oxygen catalysts for fuel-cells”, Chem. Phys., Vol. 778,
pp. 608-611, 1974.
[15] D. Susac, A. Sode, L. Zhu, P.C. Wong, M. Teo, D. Bizzotto, K.A.R.
Mitchell, P.R. Parsons, S.A. Campbell, “A methodology for investigating
new nonprecious metal catalysts for PEM fuel cells”, J. Phys. Chem. B,
vol. 110, pp. 10762-10770, May 2006.
[16] K. Lee, L. Zhang, J. Zhang, “Ternary non-noble metal chalcogenide (WCo-
Se) as electrocatalyst for oxygen reduction reaction”, J. Electrochem.
Com., vol. 9, pp.1704-1078, Jul. 2007.
[17] H. Zhong, H. Zhang, G. Liu, Y. Liang, J. Hu, B. Yi, “A novel non-noble
electrocatalyst for PEM fuel cell based on molybdenum nitride”,
Electrochem. Com., vol. 8, pp.707-712, May 2006.
[18] H. Zhong, H. Zhang, Y. Liang, J. Zhang, M. Wang, X. Wang, “A novel
non-noble electrocatalyst for oxygen reduction in proton exchange
membrane fuel cells”, J. Power. Sourc., vol. 164, pp. 572-577, Feb. 2007.
[19] F. Charreteur, F. Jaoeun, S. Ruggeri, J. Dodelet, “Fe/N/C non-precious
metal catalysts for PEM fuel cells: influence of the structural parameters
of pristine commercial carbon blacks on their activity for oxygen
reduction”, Electrochim. Acta, vol. 53, 2925-2938, Feb. 2008.
[20] X. Wang, J.S. Lee, Q. Zhu, L. Liu, Y. Wang, S. Dai, “Ammonia-treated
ordered mesoporous carbons as catalytic materials for oxygen reduction
reaction”, Chem. Mater., vol. 22, pp. 2178-2180, Mar. 2010.
[21] J.H. Kim, A. Ishihara, S. Mitsushima, N. Kamiya, K.I. Ota, “New nonplatinum
cathode based on chromium for PEFC”, Chem. Lett., vol. 36,
pp. 514-515, Jan. 2007. [22] C.W.B. Bezerra, L. Zhang, K. Lee, H. Liu, J. Zhang, Z. Shi, A.L.B.
Marques, E.P. Marques, S. Wu, J. Zhang,“Novel carbon-supported Fe-N
electrocatalysts synthesized through heat treatment of iron
tripyridyltriazine complexes for the PEM fuel cell oxygen reduction
reaction”, Electrochim. Acta, vol. 53, pp. 7703-7710, Nov. 2008.
[23] S.L. Gojkovic, S. Gupta, R.F. Savinell, “Heat-treated iron(III)
tetramethoxyphenylporphyrin chloride supported on high-area carbon as
an electrocatalyst for oxygen reduction: Part III. Detection of hydrogenperoxide
during oxygen reduction”, Electrochim. Acta., vol. 45, pp. 889-
897, Dec. 1999.
[24] O. Contamin, C. Debiemme-Chouvy, M. Savy, G. Scarbeck,
“O2electroreduction catalysis: effects of sulfur addition on some cobalt
macrocycles”, J. New. Mater. Electrochem. Syst., Vol. 3, pp. 67-74, Jun.
2000.
[25] H. Schulenburg, S. Stankov, V. Schunemann, J. Radnik, I. Dorbandt, S.
Fiechter, P. Bogdanoff, H. Tributsch, “Catalysts for the oxygen reduction
from heat-treated Iron(III) Tetramethoxyphenylporphyrin chloride:
structure and stability of active sites”, J. Phys. Chem. B., vol. 107, pp.
9034-9041, Jul. 2003.
[26] C. Medard, M. Lefevre, J.P. Dodelet, F. Jaouen, G. Lindbergh, “Oxygen
reduction by Fe-based catalysts in PEM fuel cell conditions: activity and
selectivity of the catalysts obtained with two Fe precursors and various
carbon supports”, Electrochim. Acta, vol. 51, pp. 3202-3213, Apr. 2006.
[27] R. Baker, D.P. Wilkinson, J. Zhang, “Electrocatalytic activity and
stability of substituted iron phthalocyanines towards oxygen reduction
evaluated at different temperatures”, Electrochim. Acta, vol. 53, pp.
6906-6919, Oct. 2008.
[28] S. Pylypenko, S. Mukherjee, T.S. Olson, P. Atanassov, “Non-platinum
oxygen reduction electrocatalysts based on pyrolyzed transition metal
macrocycles”, Electrochim. Acta, vol. 53, pp. 7875-7883, Nov. 2008.
[29] U.I. Koslowski, I. Abs-Wurmbach, S. Fiechter, P. Bogdanoff, “Nature of
the catalytic Centers of porphyrin-based electrocatalysts for the ORR: a
correlation of kinetic current density with the site density of Fe-N4
Centers”, J. Phys. Chem. C, vol. 112, pp. 15356-15366, Sep. 2008.
[30] I. Herrmann, U.I. Kramm, S. Fiechter, P. Bogdanoff, “Oxalate supported
pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction
reaction”, Electrochim. Acta, vol. 54, pp. 4275-4287, Jul. 2009.
[31] V. Jalan, E.J. Taylor, “Importance of interatomic spacing in catalytic
reduction of oxygen in phosphoric acid”, J. Electrochem. Soc., vol. 130,
pp. 2299-2302, Sep. 1983.
[32] M.T. Paffett, G.J. Berry, S. Gottesfeld, “Oxygen reduction at Pt0.65Cr0.35,
Pt0.2Cr0.8 and roughened platinum”, J. Electrochem. Soc., vol. 135, pp.
1431-1436, May 1988.
[33] B.C. Beard, P.N. Ross, “The structure and activity of Pt–Co alloys as
oxygen reduction electrocatalysts”, J. Electrochem. Soc., vol. 137, pp.
3368-3374, May 1990.
[34] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, “Enhancement of the
electroreduction of oxygen on Pt alloys with Fe, Ni, and Co”, J.
Electrochem. Soc., vol. 146, pp. 3750-3756, May 1999.
[35] T.R. Ralph, J.E. Keating, N.J. Collis, T.I. Hyde. ETSU Contract Report
F/02/00038, 1997.
[36] D. Thompsett, in Vielstich W, Gasteiger H, Lamm A (Eds.), Handbook of
Fuel Cells-Fundamentals, Technology and Applications, Wiley,
Chichester, UK, 2003, pp. 467.
[37] U.A. Paulus, A. Wokaun, G.G. Scherer,T.J. Schmidt, V. Stamenkovic,
N.M. Markovic, P.N. Ross, “Oxygen Reduction on Carbon Supported Pt-
Ni and Pt-Co Alloy Catalysts”, J. Phys. Chem. B, vol. 106, pp. 4181-
4191, Mar. 2002.
[38] T. He, E. Kreidler, L. Xiong, J. Luo, C.J. Zhong, “Combinatorial
screening and nano-synthesis of platinum binary alloys for oxygen
electroreduction”, J. Electrochem. Soc., vol. 153, pp. A1637-A1643, Feb.
2006.
[39] E. Antolini, J.R.C. Salgado, E.R. Gonzalez, “The stability of Pt–M
(M=first row transition metal) alloy catalysts and its effect on the activity
in low temperature fuel cells: A literature review and tests on a Pt-Co
catalyst”, J. Power. Sourc., vol. 160, pp. 957-968, Oct. 2006.
[40] H.R. Colón-Mercado, H. Kim, B.N. Popov, “Durability study of Pt3Ni1
catalyst as cathode in PEM fuel cells”, Electrochem. Com., vol. 6, pp.
795-759, Aug. 2004.
[41] H.R. Colón-Mercado, B.N. Popov, “Stability of platinum based alloy
cathode catalysts in PEM fuel cells”, J. Power. Sourc., vol. 155, pp. 253-
263, Apr. 2006.
[42] G. Li, L. Hu, J.M. Hill, “Comparison of reducibility and stability of
alumina-supported Ni catalysts prepared by impregnation and coprecipitation”,
Appl. Catal. A, vol. 301, pp.16-24, Feb. 2006.
[43] H. Wu, D. Wexler, G. Wang, “PtxNi alloy nanoparticles as cathode
catalyst for PEM fuel cells with enhanced catalytic activity”, J. Alloys
Comp., vol. 488, pp. 195-198, Nov. 2009.
[44] Y.H. Cho, T.Y. Jeon, J.W. Lim, Y.H. Cho, M. Ahnb, N. Jung, S.J. Yoo,
W.S. Yoon, Y.E. Sung, “Performance and stability characteristics of
MEAs with carbon-supported Pt and Pt1Ni1 nanoparticles as cathode
catalysts in PEM fuel cell”, Inter. J. Hydrogen. Ener., vol. 36, pp. 4394-
4399, Apr. 2011.
[45] C.S. Zignani, E. Antolini, E.R. Gonzalez, “Evaluation of the stability and
durability of Pt and Pt–Co/C catalysts for polymer electrolyte membrane
fuel cells”, J. Power Sourc., vol. 182, pp. 83-90, Jul. 2008.
[46] B. Fang, B.N. Wanjala, J. Yin, R. Loukrakpam, J. Luo, X. Hu, J. Last,
C.J. Zhong, “Evaluation of the stability and durability of Pt and Pt–Co/C
catalysts for polymer electrolyte membrane fuel cells Electrocatalytic
performance of Pt-based trimetallic alloy nanoparticle catalysts in proton
exchange membrane fuel cells”, Inter. J. Hydro. Energ., vol. 37, pp.
4627-4632, Mar. 2012.
[47] W. Trongchuankij, K. Poochinda, K. Pruksathorn, M. Hunsom, “A study
on novel combined processes for preparation of high performance Pt-
Co/C electrocatalyst for oxygen reduction in PEM fuel cell”, Renew.
Energ., vol. 12, pp. 2839-2843, Dec. 2010.
[48] S. Thanasilp, M. Hunsom, “Effect of MEA fabrication techniques on the
cell performance of Pt-Pd/C electrocatalyst for oxygen reduction in PEM
fuel cell”, Fuel, vol. 89, pp. 3847-3852, Dec. 2010.
[49] S. Thanasilp, M. Hunsom, “Preparation of a high performance Pt-Pd/C
electrocatalyst coated membrane for ORR in PEM fuel cells via a
combined process of impregnation and seeding: Effect of electrocatalyst
loading on carbon support”, Electrochim. Acta, vol. 56, pp. 1164- 1171,
Jan. 2011.
[50] S. Thanasilp, M. Hunsom, “Effect of Pt: Pd atomic ratio in Pt-Pd/C
electrocatalyst coated membrane on the electrocatalytic activity of ORR
in PEM fuel cells”, Renew. Ener., vol. 36, pp.1975-1801, Jun. 2011.
[51] C. Termpornvithit, N. Chewasatn, M. Hunsom, “Stability of Pt-Co/C and
Pt-Pd/C based oxygen reduction reaction electrocatalysts prepared at a
low temperature by a combined impregnation and seeding process in
PEM fuel cells”, J. Appl. Electrochem., vol. 42, pp.169-178, Mar. 2012.
[52] T. Ungar, J. Gubieza, G. Tichy, C. Pantea, T.W. Zerda, “Size and shape
of crystallites and internal stresses in carbon blacks”, Compos. Part. AAppl.,
vol. 36, pp. 431-436, Apr.2005.
[53] Z.B. Wang, G.P. Yin, J. Zhang, Y.C. Sun, P.F. Shi, “Co-catalytic effect
of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct
methanol fuel cell”, Electrochim. Acta., vol. 51, pp. 5691-5697, Aug.
2006.
[54] S. Liao, B. Li, Y. Li, Physical characterization of electrocatalysts, in
PEM fuel cell electrocatalysts and catalyst layers: Fundamental and
applications, J. Zhang, Ed., Springer-Verlag London Limited; 2008: pp
488.
[55] T. Lopes, E. Antolini, E.R. Gonzalez, “Carbon supported Pt-Pd alloy as
an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol
fuel cells”, Int. J. Hydrogen Energy, vol. 33, pp. 5563-5570, Oct. 2008.
[56] Z.B. Wang, G.P. Yin, P.F. Shi, Y.C. Sun, “Novel Pt-Ru-Ni/C catalysts
for methanol electro-oxidation in acid medium”, Electrochem. Solid-State
Lett., vol. 9, pp. A13-A15, Nov. 2006.
[57] J.J. Van Der Klink, “NMR spectroscopy as a probe of surfaces of
supported metal catalysts”, Adv. Catal., Vol. 44, pp. 1-117, Apr. 1999.
[58] K. Kinoshita, Electrochemical oxygen technology, John Wiley & Sons,
Inc. 1992.
[59] J. O’M. Bockris, A. Damjanovic, J. McHardy, ThirdInternatoinal
Symposium on Fuel Cells (TroisiemesJournees Internationales D’etudes
de Piles a Combustibles), p.15 Presses AcademiqueEuropeennes,
Brussels, 1969. Proceedings of a conference held under joint sponsor of
SERAI and COMASCI, Brussels, June 16-20, 1969.
[60] E.Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of Nafion
loading in the catalyst layer of gas-diffusion electrodes for PEFC”, J.
Power Sourc., vol. 77, pp.136-142, Feb. 1999. [61] E. Rios, S. Abarca, P. Daccarett, P.N. Cong, D. Martel, J.F. Marco, J.R.
Gancedo, J.R. Gautier, “Electrocatalysis of oxygen reduction on CuxMn3-
xO4 (1.0 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes”,
Inter. J. Hydro. Energ., vol. 33, pp. 4945-4954, Oct. 2008.
[62] J. Larminie, A. Dick, Fuel cell systems explained. 2nd edition. Chichester:
John Wiley & Sons, 2003.
[63] H. Lv, S. Mu, N. Cheng, M. Pan, “Nano-silicon carbide supported
catalysts for PEM fuel cells with high electrochemical stability and
improved performance by addition of carbon”, Appl. Catal. B, vol. 100,
pp. 190-196, Oct. 2010.
[64] S.Y. Huang, P. Ganesan, B.N. Popov, “Titania supported platinum
catalyst with high electrocatalytic activity and stability for polymer
electrolyte membrane fuel cell”, Appl. Catal. B, vol. 102, pp. 71-77, Feb.
2011.
[65] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic,
N.M. Markovi, P.N. Ross, “Oxygen reduction on high surface area Ptbased
alloy catalysts in comparison to well defined smooth bulk alloy
electrodes”, Electrochim. Acta, vol. 47, pp. 3787-3798, Aug. 2002.
[66] G. Prentice, Electrochemical Engineering Principles, Prentice Hall Inc.,
New Jersey, 1991.
[67] P. Yu, M. Pemberton, P. Plasse, Plasse P., “PtCo/C cathode catalyst for
improved durability in PEMFCs”, J. Power Sourc., vol. 144, pp. 11-20,
Jun. 2005.
[68] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, “PBI-based polymer
electrolyte membranes fuel cells: Temperature effects on cell
performance and catalyst stability”, Electrochim. Acta, vol. 52, pp. 3910-
3920, Mar. 2007.
[69] P.J. Ferreira, G.J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S.
Kocha, “Instability of Pt/C electrocatalysts in proton exchange membrane
fuel cells”, J. Electrochem. Soc., vol. 152, pp. A2256-A22571, Oct. 2005.
[70] T.R. Ralph, M.P. Hogarth, “Catalysis for low temperature fuel cells part I
the cathode challenges”, Plat. Met. Rev., vol. 46, 3-14, Jan. 2002.
[71] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, “Activity
benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen
reduction catalysts for PEMFCs”, Appl. Catal. B., vol. 56, pp. 9-35, Mar.
2005.
[72] C.H. Cho, B. Choi, Y.H. Cho, H.S. Park, Y.E. Sung, “Pd-based
PdPt(19:1)/C electrocatalyst as an electrode in PEM fuel cell”,
Electrochem. Com., vol. 9, pp. 378-381, Mar. 2007.
[73] M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart,
“Activity and stability of ordered and disordered Co-Pt alloys for
phosphoric acid fuel cells”, J. Electrochem. Soc., vol. 141, pp. 2659-
2668, May 1994.
[74] D.C. Huang, P.J. Yu, F.J. Liu, S.L. Huang, K.L. Hsueh, Y.C. Chen, C.H.
Wu, W.C. Chang, F.H. Tsau, “Effect of dispersion solvent in catalyst ink
on proton exchange membrane fuel cell performance”, Int. J.
Electrochem. Sci., vol. 6, pp. 2551-2565, Jul. 2011.