Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

The Role of Planning and Memory in the Navigational Ability

Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.

Teachers’ Perceptions of the Negative Impact of Tobephobia on Their Emotions and Job Satisfaction

The aim of this study was to investigate the extent of teachers’ experiences of tobephobia (TBP) in their heterogeneous classrooms and what impact this had on their emotions and job satisfaction. The expansive and continuously changing demands for quality and equal education for all students in educational organisations that have limited resources connotes that the negative effects of TBP cannot be simply ignored as being non-existent in the educational environment. As this quantitative study reveals, teachers disliking their job with low expectations, lack of motivation in their workplace and pessimism, result in their low self-esteem. When there is pessimism in the workplace, then the employees’ self-esteem will inevitably be low, as pointed out by 97.1% of the respondents in this study. Self-esteem is a reliable indicator of whether employees are happy or not in their jobs and the majority of the respondents in this study agreed that their experiences of TBP negatively impacted on their self-esteem. Hence, this exploratory study strongly indicates that productivity in the workplace is directly linked to the employees’ expectations, self-confidence and their self-esteem. It is therefore inconceivable for teachers to be productive in their regular classrooms if their genuine professional concerns, anxieties, and curriculum challenges are not adequately addressed. This empirical study contributes to our knowledge on TBP because it clearly outlines some of the teaching problems that we are grappling with and constantly experience in our schools in this century. Therefore, it is imperative that the tobephobic experiences of teachers are not merely documented, but appropriately addressed with relevant action by every stakeholder associated with education so that our teachers’ emotions and job satisfaction needs are fully taken care of.

A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence

Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.

Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90

A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).

Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources

The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.

Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis

Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis.

Apolipoprotein E Gene Polymorphism and Its Association with Cardiovascular Heart Disease Risk Factors in Type 2 Diabetes Mellitus

Apolipoprotein E (APOE) gene polymorphism has influence on serum lipids which relates to cardiovascular risk. The purpose of this study was to determine the frequency distribution of APOE alleles among Malaysian Type 2 Diabetes Mellitus (DM) patients with and without coronary artery disease (CAD) and their association with serum lipid profiles. A total of 115 patients were recruited in which 78 patients had Type 2 DM without CAD and 37 patients had Type 2 DM with CAD. The APOE polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The APOE ɛ3 allele was the most common one in both groups. There was no significant association between the APOE genotypes and the CAD status in Type 2 DM using Pearson χ2 test. Further analysis indicated there were no significant differences in all lipid parameters between E2, E3 and E4 subgroups in both groups. The study showed that the E4 allele carriers of Type 2 DM with CAD patients had higher LDL-C level and lower HDL-C level compared to the other allele carriers. However, analyses showed these levels were not statistically different. The study also showed that the Type 2 DM with CAD group with E2 allele had higher triglyceride (TG). In conclusion, further study with larger sample size is needed to confirm role of E4 as a marker of CAD among Type 2 DM patients in Malaysian population.

The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Beginning Physics Experiments Class Using Multi Media in National University of Laos

National University of Laos (NUOL) requested Japan International Cooperation Agency (JICA) volunteers to begin a physics experiments class using multi media. However, there are issues. NUOL had no physics experiment class, no space for physics experiments, experiment materials were not used for many years and were scattered in various places, and there is no projector and laptop computer in the unit. This raised the question: How do authors begin the physics experiments class using multimedia? To solve this problem, the JICA took some steps, took stock of what was available and reviewed the syllabus. The JICA then revised the experiment materials to assess what was available and then developed textbooks for experiments using them; however, the question remained, what about the multimedia component of the course? Next, the JICA reviewed Physics teacher Pavy Souvannavong’s YouTube channel, where he and his students upload video reports of their physics classes at NUOL using their smartphones. While they use multi-media, almost all the videos recorded were of class presentations. To improve the multimedia style, authors edited the videos in the style of another YouTube channel, “Science for Lao,” which is a science education group made up of Japan Overseas Cooperation Volunteers (JOCV) in Laos. They created the channel to enhance science education in Laos, and hold regular monthly meetings in the capital, Vientiane, and at teacher training colleges in the country. They edit the video clips in three parts, which are the materials and procedures part including pictures, practice footage of the experiment part, and then the result and conclusion part. Then students perform experiments and prepare for presentation by following the videos. The revised experiment presentation reports use PowerPoint presentations, material pictures and experiment video clips. As for providing textbooks and submitting reports, the students use the e-Learning system of “Moodle” of the Information Technology Center in Dongdok campus of NUOL. The Korean International Cooperation Agency (KOICA) donated those facilities. The authors have passed the process of the revised materials, developed textbooks, the PowerPoint slides presented by students, downloaded textbooks and uploaded reports, to begin the physics experiments class using multimedia. This is the practice research report for beginning a physics experiments class using multimedia in the physics unit at the Department of Natural Science, Faculty of Education, at the NUOL.

User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell

Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.

The Effect of Curcumin on Cryopreserved Bovine Semen

Oxidative stress associated with semen cryopreservation may result in lipid peroxidation (LPO), DNA damage and apoptosis, leading to decreased sperm motility and fertilization ability. Curcumin (CUR), a natural phenol isolated from Curcuma longa Linn. has been presented as a possible supplement for a more effective semen cryopreservation because of its antioxidant properties. This study focused to evaluate the effects of CUR on selected oxidative stress parameters in cryopreserved bovine semen. 20 bovine ejaculates were split into two aliquots and diluted with a commercial semen extender containing CUR (50 μmol/L) or no supplement (control), cooled to 4 °C, frozen and kept in liquid nitrogen. Frozen straws were thawed in a water bath for subsequent experiments. Computer assisted semen analysis was used to evaluate spermatozoa motility, and reactive oxygen species (ROS) generation was quantified by using luminometry. Superoxide generation was evaluated with the NBT test, and LPO was assessed via the TBARS assay. CUR supplementation significantly (P

Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

The Role of Public Education in Increasing Public Awareness through Mass Media with Emphasis on Newspapers and TV: Coping with Possible Earthquake in Tehran

This study aimed to evaluate the role of state education in increasing public awareness through mass media (with emphasis on newspapers and TV) coping with possible earthquake in Tehran. All residents aged 15 to 65 who live in the five regions of Tehran (North, South, East, West and Center) during the plan implementation were selected and studied. The required sample size in each region was calculated based on the Cochran formula (n=380). In order to collect and analyze the data, a questionnaire with reliability (82%) and a one-sample t-test has been used, respectively. The results showed that warnings related to the Tehran earthquake affected people in the pre-contemplation stage, while public education through mass media did not promote public awareness about prevention, preparedness and rehabilitation.

A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Experimental Investigations on the Mechanism of Stratified Liquid Mixing in a Cylinder

In this paper, the mechanism of stratified liquids’ mixing in a cylinder is investigated. It is focused on the effects of Rayleigh-Taylor Instability (RTI) and rotation of the cylinder on liquid interface mixing. For miscible liquids, Planar Laser Induced Fluorescence (PLIF) technique is applied to record the concentration field for one liquid. Intensity of Segregation (IOS) is used to describe the mixing status. For immiscible liquids, High Speed Camera is adopted to record the development of the interface. The experiment of RTI indicates that it plays a great role in the mixing process, and meanwhile the large-scale mixing is triggered, and subsequently the span of the stripes decreases, showing that the mesoscale mixing is coming into being. The rotation experiments show that the spin-down process has a great role in liquid mixing, during which the upper liquid falls down rapidly along the wall and crashes into the lower liquid. During this process, a lot of interface instabilities are excited. Liquids mix rapidly in the spin-down process. It can be concluded that no matter what ways have been adopted to speed up liquid mixing, the fundamental reason is the interface instabilities which increase the area of the interface between liquids and increase the relative velocity of the two liquids.

Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces

In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.