A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera

In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previous proposed methods, a motion capture system (i. e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipments, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental results are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed.

Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals

In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.

In vivo Alterations in Ruminal Parameters by Megasphaera elsdenii Inoculation on Subacute Ruminal Acidosis (SARA)

SARA is a common and serious metabolic disorder in early lactation in dairy cattle and in finishing beef cattle, caused by diets with high inclusion of cereal grain. This experiment was performed to determine the efficacy of Megasphaera elsdenii, a major lactate-utilizing bacterium in prevention/treatment of SARA in vivo. In vivo experimentation, it was used eight ruminally cannulated rams and it was applied the rapid adaptation with the mixture of grain based on wheat (80% wheat, 20% barley) and barley (80% barley, 20% wheat). During the systematic adaptation, it was followed the probability of SARA formation by being measured the rumen pH with two hours intervals after and before feeding. After being evaluated the data, it was determined the ruminal pH ranged from 5.2-5.6 on the condition of feeding with 60 percentage of grain mixture based on barley and wheat, that assured the definite form of subacute acidosis. In four days SARA period, M. elsdenii (1010 cfu ml-1) was inoculated during the first two days. During the SARA period, it was observed the decrease of feed intake with M. elsdenii inoculation. Inoculation of M. elsdenii was caused to differentiation of rumen pH (P

An Interlacing Technique-Based Blind Video Watermarking Using Wavelet

The rapid growth of multimedia technology demands the secure and efficient access to information. This fast growing lose the confidence of unauthorized duplication. Henceforth the protection of multimedia content is becoming more important. Watermarking solves the issue of unlawful copy of advanced data. In this paper, blind video watermarking technique has been proposed. A luminance layer of selected frames is interlaced into two even and odd rows of an image, further it is deinterlaced and equalizes the coefficients of the two shares. Color watermark is split into different blocks, and the pieces of block are concealed in one of the share under the wavelet transform. Stack the two images into a single image by introducing interlaced even and odd rows in the two shares. Finally, chrominance bands are concatenated with the watermarked luminance band. The safeguard level of the secret information is high, and it is undetectable. Results show that the quality of the video is not changed also yields the better PSNR values.

A Preliminary Analysis of Sustainable Development in the Belgrade Metropolitan Area

The paper provides a comprehensive analysis of the sustainable development in the Belgrade Metropolitan Region - BMA (level NUTS 2) preliminary evaluating the three chosen components: 1) economic growth and developmental changes; 2) competitiveness; and 3) territorial concentration and industrial specialization. First, we identified the main results of development changes and economic growth by applying Shift-share analysis on the metropolitan level. Second, the empirical evaluation of competitiveness in the BMA is based on the analysis of absolute and relative values of eight indicators by Spider method. Paper shows that the consideration of the national share, industrial mix and metropolitan/regional share in total Shift share of the BMA, as well as economic/functional specialization of the BMA indicate very strong process of deindustrialization. Allocative component of the BMA economic growth has positive value, reflecting the above-average sector productivity compared to the national average. Third, the important positive role of metropolitan/regional component in decomposition of the BMA economic growth is highlighted as one of the key results. Finally, comparative analysis of the industrial territorial concentration in the BMA in relation to Serbia is based on location quotient (LQ) or Balassa index as a valid measure. The results indicate absolute and relative differences in decrease of industry territorial concentration as well as inefficiency of utilizing territorial capital in the BMA. Results are important for the increase of regional competitiveness and territorial distribution in this area as well as for improvement of sustainable metropolitan and sector policies, planning and governance on this level.

Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation

Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.

Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-cut Papaya (Carica papaya)

Psyllium gum alone and in combination with sunflower oil was investigated as a possible alternative edible coating for improvement of quality and shelf life of fresh-cut papaya. Different concentrations including 0.5, 1 and 1.5 percent of psyllium gum were used for coating of fresh-cut papaya. In some samples, refined sunflower oil was used as a lipid component to increase the effectiveness of coating in terms of water barrier properties. Soya lecithin was used as an emulsifier in coatings containing oil. Pretreatment with 1% calcium chloride was given to maintain the firmness of fresh-cut papaya cubes. 1% psyllium gum coating was found to yield better results. Further, addition of oil helped to maintain the quality and acted as a barrier to water vapour, therefore, minimizing the weight loss.

Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs Oxidation

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Plasma Lipid Profiles and Atherogenic Indices of Rats Fed Raw and Processed Jack Fruit (Artocarpus heterophyllus) Seeds Diets at Different Concentrations

The effect of processing on plasma lipid profile and atherogenic indices of rats fed Artocarpus heterophyllus seed diets at different concentrations were investigated. Fifty five rats were used for this study, they were divided into eleven groups of five rats each (one control group and ten test groups), the test groups were fed raw, boiled, roasted, fermented and soaked diets at 10% and 40% concentrations. The study lasted for thirty five days. The diets led to significant decrease (p

Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness

Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. Multitudes of methods have been investigated to reduce DOMS. One of the valuable methods to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric with maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three equal groups: Group A (first study group): 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as a prophylactic exercise. Group B (second study group): 20 subjects received maximal isometric contraction on nondominant elbow flexors as a prophylactic exercise. Group C (control group): 20 subjects did not receive any prophylactic exercises. Maximal isometric peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after, and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction produced a greater protective effect against muscle damage induced by maximal eccentric exercise performed 2 days later.

Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of supervisory control and data acquisition system (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide area measurement system (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of Matlab based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Applying Kinect on the Development of a Customized 3D Mannequin

In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.

Geometrical Structure and Layer Orientation Effects on Strength, Material Consumption and Building Time of FDM Rapid Prototyped Samples

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium

Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae are promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the quality of biodiesel produced from lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. At the optimum conditions, the highest biodiesel production yield was found to be 82%. The fuel properties of the produced biodiesel, without any separation step, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.

Investigation of Bubble Growth during Nucleate Boiling Using CFD

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Off-Line Detection of “Pannon Wheat” Milling Fractions by Near-Infrared Spectroscopic Methods

The aim of this investigation is to elaborate nearinfrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. These wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis [PCA], cluster analysis [CA]) and operation condition of milling technology. It is obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Leadership in Future Operational Environment

Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained. 

Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle

Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration design and inner instrument layout of the Mars entry capsule.

Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050 was observed to be the maximum extracellular enzyme producer.