Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation

Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.




References:
[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical
and chemical dissolution of wafers,” Appl. Phys. Lett., 57, 1046 (1990).
[2] V. Lehmann, U. Gösele, “Porous silicon formation: A quantum wire
effect,” Appl. Phys. Lett., 58, 856 (1991).
[3] L. Brus, Light emission in silicon from physics to devices, D. Lockwood
(Ed.), Academic Press, New York, (1998) p.303.
[4] S. Ossicini, Light emitting silicon for microphotonics, S. Ossicini, L.
Pavesi, F.Priolo (Ed.), Springer, Berlin (2003) p.123.
[5] G. T. Reed and A. P. Knights (Ed.), Silicon Photonics, Wiley-Interscience
(2008).
[6] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzó, F. Priolo, “Optical gain
in silicon nanocrystals,” Nature, 408, 440 (2000).
[7] T. S. Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, “Visible
photoluminescence in Si+‐implanted silica glass,” J. Appl. Phys., 75, 7779
(1994).
[8] T. S. Iwayama, S. Nakao, K. Saitoh, Visible photoluminescence in Si+‐
implanted thermal oxide films on crystalline Si Appl. Phys. Lett., 65,
1814 (1994).
[9] J. F. Ziegler, Ion Implantation Technology, J. F. Ziegler (Ed.),
North-Holland, Amsterdam (1992) p.1.
[10] P. D. Townsend, P. J. Chandler and L. Zhang, Optical Effects of Ion
Implantation, Cambridge University Press, Cambridge (1994).
[11] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L.
Brongersma, A. Polman, “Defect‐related versus excitonic visible light
emission from ion beam synthesized Si nanocrystals in SiO2,” Appl. Phys.
Lett., 69, 2033 (1996).
[12] P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E.
Grilli, M. Gruzzi, “Room‐temperature visible luminescence from silicon
nanocrystals in silicon implanted SiO2 layers,” Appl. Phys. Lett., 66, 851
(1995).
[13] J. F. Ziegler, J. P. Biersack, U. L. Littmark, the Stopping and Range of
Ions in Solids, Pergamon, New York (1985).
[14] L. Skuja Optically active oxygen-deficiency-related centers in amorphous
silicon dioxide,” J. Non-Cryst. Solids, 239, 16 (1998).
[15] T. S. Iwayama, T. Hama, D. E. Hole, I. W. Boyd, “Characteristic
photoluminescence properties of Si nanocrystals in SiO2 fabricated by ion
implantation and annealing,” Solid State Elec., 45, 1487 (2001).
[16] Defects in SiO2 and Related Dielectrics: Science and Technology, G.
Pacchioni, L. Skuja, D. L. Griscom (Ed.), Kluwer Academic Publishers
(2001).
[17] T. S. Iwayama, Y. Terao, A. Kamiya, M. Takeda, S. Nakao, K. Saitoh,
“Correlation of Microstructure and photoluminescence for
nanometer-sized Si crystals formed in an amorphous SiO2 matrix by ion
implantation, Nanostruct. Mater. 5, 307 (1995).