What Factors Contributed to the Adaptation Gap during School Transition in Japan?

The present study was aimed to examine the structure of children’s adaptation during school transition and to identify a commonality and dissimilarity at the elementary and junior high school. 1,983 students in the 6th grade and 2,051 students in the 7th grade were extracted by stratified two-stage random sampling and completed the ASSESS that evaluated the school adaptation from the view point of ‘general satisfaction’, ‘teachers’ support’, ‘friends’ support’, ‘anti-bullying relationship’, ‘prosocial skills’, and ‘academic adaptation’. The 7th graders tend to be worse adaptation than the 6th graders. A structural equation modeling showed the goodness of fit for each grades. Both models were very similar but the 7th graders’ model showed a lower coefficient at the pass from ‘teachers’ support’ to ‘friends’ support’. The role of ‘teachers’ support’ was decreased to keep a good relation in junior high school. We also discussed how we provide a continuous assistance for prevention of the 7th graders’ gap.

Classification of Construction Projects

In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.

Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin- Staphylococcus aureus Infections

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Effects of Biostimulant Application on Quali-Quantitative Characteristics of Cauliflower, Pepper and Fennel Crops under Organic and Conventional Fertilization

Nowadays, the main goal for modern horticultural production is an increase the quality. In recent years, the use of organic fertilizers or biostimulants that can be applied in agriculture to improve quali-quantitative crop yields has encountered increasing interest. Biostimulants are gaining importance also for their possible use in organic and sustainable agriculture, to avoid excessive fertilizer applications. Consecutive experimental trials were carried out in the Apulia region (southern Italy) on three herbaceous crops (cauliflower, pepper, fennel) grown in pots under conventional and organic fertilization systems without and with biostimulants. The aim was to determine the effects of three biostimulants (Siapton®10L, Micotech L, Lysodin Alga-Fert) on quali-quantitative yield characteristics. At harvest, the quali-quantitative yield characteristics of each crop were determined. All of the experimental data were subjected to analysis of variance (ANOVA), and when significant effects were detected, the means were compared using Tukey’s tests. These data show large differences in these yield characteristics between conventional and organic crops, particularly highlighting higher yields for the conventional crops, while variable results were generally observed when the biostimulants were applied. In this context, there were no effects of the biostimulants on the quantitative yield, whereas there were low positive effects on the qualitative characteristics, as related to higher dry matter content of cauliflower, and higher soluble solids content of pepper. Moreover, there were evident positive effects of the biostimulants with fennel, due to the lower nitrate content. These latter data are in line with most of the published literature obtained for other herbaceous crops.

Influence of the Paint Coating Thickness in Digital Image Correlation Experiments

In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.

Temperature Control & Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan

To mitigate the urban heat island effect has become a global issue when we are faced with the challenge of climate change. Through literature review, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect to a degree. Because there are not enough open space and parks, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary schools are asked with priority to build green roof and important educational place to promote green roof concept. Testo175-H1 recording device was used to record the temperature and humidity differences between roof surface and interior space below roof with and without green roof in the long-term. We also use questionnaires to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary schools. The results indicated that the temperature of roof without greening was higher than that with greening by about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof probably because of the character of the accumulation and dissipation of heat of greening. The temperature of the interior space below green roof was normally lower than that without green roof by about 1°C, showing that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, and students wished all classes can take turns to maintain the green roof. Teachers and students whose school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may have access to and touch the green roof can be more aware of the green roof benefit. We suggest architects to increase the accessibility and visibility of green roof, such as use it as a part of the activity space. This idea can be a reference to the green roof curriculum design.

Inadequacy of Macronutrient and Micronutrient Intake in Children Aged 12-23 Months Old: An Urban Study in Central Jakarta, Indonesia

Optimal feeding, including optimal micronutrient intake, becomes one of the ways to overcome the long-term consequences of undernutrition. Macronutrient and micronutrient intake were important to a rapid growth and development of young children. The study objective was to assess macro and micronutrient intake and its adequacy in children aged 12-23 months. This survey was a cross-sectional study, involving 83 caregivers with children aged 12-23 months old in Senen Sub-district, Central Jakarta selected through simple random sampling. Data on nutrient intake was obtained through interview using single 24-hour recall. Repeated 24- hour recall to sub-sample was done to estimate the proportion of nutrient inadequacy. The highest prevalence of nutrient inadequacy was iron (52.4%), followed by vitamin C (30.9%) and zinc (28.8%). Almost 12% children had inadequate energy intake. More than half of children (62.6%) were anemic (25.3% were severely anemic). Micronutrient inadequacy, especially iron, was more problematic than macronutrient inadequacy in the study area.

Simulink Model of Reference Frame Theory Based Three Phase Shunt Active Filter

Among various active filters, shunt active filter is a viable solution for reactive power and harmonics compensation. In this paper, the SRF plan is used to generate current reference for compensation and conventional PI controllers were used as the controller to compensate the reactive power. The design of the closed loop controllers is reserved simple by modeling them as first order systems. Computationally uncomplicated and efficient SVM system is used in the present work for better utilization of dc bus voltage. The rating of shunt active filter has been finalized based on the reactive power demand of the selected reactive load. The proposed control and SVM technique are validated by simulating in MATLAB software.

Spectroscopic Characterization of Indium-Tin Laser Ablated Plasma

In the present research work we present the optical emission studies of the Indium (In) – Tin (Sn) plasma produced by the first (1064 nm) harmonic of an Nd: YAG nanosecond pulsed laser. The experimentally observed line profiles of neutral Indium (In I) and Tin (SnI) are used to extract the electron temperature (Te) using the Boltzmann plot method. Whereas, the electron number density (Ne) has been determined from the Stark broadening line profile method. The Te is calculated by varying the distance from the target surface along the line of propagation of plasma plume and also by varying the laser irradiance. Beside we have studied the variation of Ne as a function of laser irradiance as well as its variation with distance from the target surface.

Modeling and Control of an Acrobot Using MATLAB and Simulink

The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. The acrobot, which is a planar two-link robotic arm in the vertical plane with an actuator at the elbow but no actuator at the shoulder, is a representative in underactuated systems. In this paper, the dynamic model of the acrobot is implemented using Mathworks’ Simscape. And the sliding mode control is constructed using MATLAB and Simulink.

Development and Characterization of Bio-Tribological, Nano-Multilayer Coatings for Medical Tools Application

Development of new generation bio-tribological, multilayer coatings opens an avenue for fabrication of future hightech functional surfaces. In the presented work, nano-composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nanomultilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio-tribological properties of the coatings was studied. The bio-tests were used as a screening tool for the analyzed nanomultilayer coatings before they could be deposited on medical tools. Bio-medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-ondisc mechanical test. The micro hardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio-tribological point of view, the optimal properties had the C106_1 material.

Realization of Soliton Phase Characteristics in 10 Gbps, Single Channel, Uncompensated Telecommunication System

In this paper, the dependence of soliton pulses with respect to phase in a 10Gbps, single channel, dispersion uncompensated telecommunication system was studied. The characteristic feature of periodic soliton interaction was noted at the Interaction point (I=6202.5Km) in one collision length of L=12405.1 Km. The interaction point is located for 10Gbps system with an initial relative spacing (qo) of soliton as 5.28 using Perturbation theory. It is shown that, when two in-phase solitons are launched, they interact at the point I=6202.5 Km, but the interaction could be restricted with introduction of different phase initially. When the phase of the input solitons increases, the deviation of soliton pulses at the ‘I’ also increases. We have successfully demonstrated this effect in a telecommunication set-up in terms of Quality factor (Q), where the Q=0 for in-phase soliton. The Q was noted to be 125.9, 38.63, 47.53, 59.60, 161.37, and 78.04 for different phases such as 10o, 20o, 30o, 45o, 60o and 90o degrees respectively at Interaction point (I).

Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population

Community integration is a construct that an increasing body of research has shown to have a significant impact on the wellbeing and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and current literature on the definition and manifestation of community integration in the general population is scarcer. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the sociodemographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.

Characterization and Predictors of Paranoid Ideation in Youths

Paranoid ideation is a common thought process that constitutes a defense against perceived social threats. The current study aimed at the characterization of paranoid ideation in youths and to explore the possible predictors involved in the development of paranoid ideations. Paranoid ideation, shame, submission, early childhood memories and current depressive, anxious and stress symptomatology were assessed in a sample of 1516 Portuguese youths. Higher frequencies of paranoid ideation were observed, particularly in females and youths from lower socioeconomic status. The main predictors identified relates to submissive behaviors and adverse childhood experiences, and especially to shame feelings. The current study emphasizes that the these predictors are similar to findings in adults and clinical populations, and future implications to research and clinical practice aiming at paranoid ideations are discussed, as well as the pertinence of the study of mediating factors that allow a wider understanding of this thought process in younger populations and the prevention of psychopathology in adulthood.

Obsession of Time and the New Musical Ontologies: The Concert for Saxophone, Daniel Kientzy and Orchestra by Myriam Marbe

For the music composer Myriam Marbe the musical time and memory represent 2 (complementary) phenomena with conclusive impact on the settlement of new musical ontologies. Summarizing the most important achievements of the contemporary techniques of composition, her vision on the microform presented in The Concert for Daniel Kientzy, saxophone and orchestra transcends the linear and unidirectional time in favour of a flexible, multivectorial speech with spiral developments, where the sound substance is auto(re)generated by analogy with the fundamental processes of the memory. The conceptual model is of an archetypal essence, the music composer being concerned with identifying the mechanisms of the creation process, especially of those specific to the collective creation (of oral tradition). Hence the spontaneity of expression, improvisation tint, free rhythm, micro-interval intonation, coloristictimbral universe dominated by multiphonics and unique sound effects, hence the atmosphere of ritual, however purged by the primary connotations and reprojected into a wonderful spectacular space. The Concert is a work of artistic maturity and enforces respect, among others, by the timbral diversity of the three species of saxophone required by the music composer (baritone, sopranino and alt), in Part III Daniel Kientzy shows the performance of playing two saxophones concomitantly. The score of the music composer Myriam Marbe contains a deeply spiritualized music, full or archetypal symbols, a music whose drama suggests a real cinematographic movement.

Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Screening of Congenital Heart Diseases with Fetal Phonocardiography

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads

Masonry infill walls are inevitable in the selfsupporting structures, but their contribution in the resistance to earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of masonry infill walls behavior in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D Finite Element Analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load; the finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, we can so conclude that the filling brings an additional rigidity to the structure not to be neglected; it is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.

Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker

Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.

Crystalline Structure of Starch Based Nano Composites

In contrast with literal meaning of nano, researchers have been achieved mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.