Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the EnergyPlus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Perception and Implementation of Machine Translation Applications by the Iranian English Translators

The present study is an attempt to provide a relatively comprehensive preview of the Iranian English translators’ perception on Machine Translation. Furthermore, the study tries to shed light on the status of implementation of Machine Translation among the Iranian English Translators. To reach the aforementioned objectives, the Localization Industry Standards Association’s questioner for measuring perceptions with regard to the adoption of a technology innovation was adapted and used to investigate the perception and implementation of Machine Translation applications by the Iranian English language translators. The participants of the study were 224 last-year undergraduate Iranian students of English translation at 10 universities across the country. The study revealed a very low level of adoption and a very high level of willingness to get familiar with and learn about Machine Translation, as well as a positive perception of and attitude toward Machine Translation by the Iranian English translators.

Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a realtime Simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three VelmexXSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed Simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain

Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.

Early Warning System of Financial Distress Based On Credit Cycle Index

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightlydistressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the one-stage model has the lower misclassification error rate than the two-stage model. The one-stage model is more accurate than the two-stage model.

Optimal Placement and Sizing of SVC for Load Margin Improvement Using BF Algorithm

Power systems are operating under stressed condition due to continuous increase in demand of load. This can lead to voltage instability problem when face additional load increase or contingency. In order to avoid voltage instability suitable size of reactive power compensation at optimal location in the system is required which improves the load margin. This work aims at obtaining optimal size as well as location of compensation in the 39- bus New England system with the help of Bacteria Foraging and Genetic algorithms. To reduce the computational time the work identifies weak candidate buses in the system, and then picks only two of them to take part in the optimization. The objective function is based on a recently proposed voltage stability index which takes into account the weighted average sensitivity index is a simpler and faster approach than the conventional CPF algorithm. BFOA has been found to give better results compared to GA.

Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is central on aging of skin especially by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photodamage is exceedingly valued. Retinoids and alpha hydroxy acids have been endorsed by some researchers as possible candidates for protecting and or repairing the effect of UV damaged skin. For consolidating a better system of anti- and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblast’s elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30 -35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in maintaining elastin concentration in UV exposed cells. We assume this preservation could be the result of increased tropo-elastin gene expression stimulated by retinol whereas lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid

In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.

Study Regarding Effect of Isolation on Social Behaviour in Mice

Humans are social mammals, of the primate order. Our biology, our behaviour and our pathologies are unique to us. In our desire to understand, reduce solitary confinement one source of information is the many reports of social isolation of other social mammals, especially primates. A behavioural study was conducted in the department of pharmacology at Indira Gandhi Medical College, Shimla in Himachalpradesh province in India using white albino mice. Different behavioural parameters were observed by using open field, tail suspension, tests for aggressive behaviour and social interactions and the effect of isolation was studied. The results were evaluated and the standard statistics were applied. The said study was done to establish facts that isolation itself impairs social behaviour and can lead to alcohol dependence as well as related drug dependence.

Political and Economic Transition of People with Disabilities Related to Globalization

This paper analyzes the political and economic issues that people with disabilities face related to globalization; how people with disabilities have been adapting globalization and surviving under worldwide competition system. It explains that economic globalization exacerbates inequality and deprivation of people with disabilities. The rising tide of neo-liberal welfare policies emphasized efficiency, downsized social expenditure for people with disabilities, excluded people with disabilities against labor market, and shifted them from welfare system to nothing. However, there have been people with disabilities' political responses to globalization, which are characterized by a global network of people with disabilities as well as participation to global governance. Their resistance can be seen as an attempt to tackle the problems that economic globalization has produced. It is necessary paradigm shift of disability policy from dependency represented by disability benefits to independency represented by labor market policies for people with disabilities.

Transformation of Kosovo Education from Traditional into Modern 1999-2012

Everyday life is and will be influenced depending on the developments that society undergoes throughout the history. Particularly, countries undergoing transition from one system to another sustain the greatest impact in trying to embrace the modern system. Kosovo society had the fortune to experience a change, which began in late 1999 to continue up to date. One of the 'developments' of the time with the evolution in Kosovo society was the transition from the traditional education system into the modern one. This transformation began immediately after the war, to continue even today. It was started by internationals, which governed and administered Kosovo society, including education. There was a great 'evolution', because almost the entire system was 'changed'. Among other things, for the first time it was enabled the opening of private schools from the lowest level up to the colleges and universities. This paper will address: how much was ready the society to embrace such a 'cultural' change in education, respectively, how much were prepared teachers for such changes; as it was actually thought to be a modern education system, how much was it according to international standards; what are the results and current situation in Kosovo education.

Performance Evaluation for Weightlifting Lifter by Barbell Trajectory

The purpose of this study is to investigate the kinematic characteristics and differences of the snatch barbell trajectory of 53 kg class female weight lifters. We take the 2014 Taiwan College Cup players as examples, and tend to make kinematic applications through the proven weightlifting barbell track system. The competition videos are taken by consumer camcorder with a tripod which set up at the side of the lifter. The results will be discussed in three parts, the first part is various lifting phase, the second part is the compare lifting between success and unsuccessful, and the third part is to compare the outstanding player with the general. Conclusion through the barbell can be used to observe the trajectories of our players lifting the usual process cannot be observed in the presence of malfunction or habits, so that the coach can find the problem and guide the players more accurately. Our system can be applied in practice and competition to increase the resilience of the lifter on the field.

Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Role of Environmental Focus in Legal Protection and Efficient Management of Wetlands in the Republic of Kazakhstan

The article discusses the legal framework of the government’s environmental function and analyzes the role of the national policy in protection of wetlands. The problem is of interest for it deals with the most important branch of economy – utilization of Kazakhstan’s natural resources, protection of health and environmental wellbeing of the population. Development of a longterm environmental program addressing the protection of wetlands represents the final stage of the government’s environmental policy, and is a relatively new function for the public administration system. It appeared due to the environmental measures that require immediate decisions to be taken. It is an integral part of the effort in the field of management of state-owned natural resource, as well as of the measures aimed at efficient management of natural resources to avoid their early depletion or contamination.

Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven

Carbon Deposits are often occurred inside the industrial coke oven during coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during burn-off process.

The Effects of Logistical Centers Realization on Society and Economy

Presently, it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight has had a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describes the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelled total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.

Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin - Sudan

In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460m to 1600m. These crossplots were successful to discriminate between sand and shale when using PImpedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.

Impact of Ship Traffic to PM2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at international level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work, an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.