Automatic Vehicle Location Systems

In this article, a single application is suggested to determine the position of vehicles using Geographical Information Systems (GIS) and Geographical Position Systems (GPS). The part of the article material included mapping three dimensional coordinates to two dimensional coordinates using UTM or LAMBERT geographical methods, and the algorithm of conversion of GPS information into GIS maps is studied. Also, suggestions are given in order to implement this system based on web (called web based systems). To apply this system in IRAN, related official in this case are introduced and their duties are explained. Finally, economy analyzed is assisted according to IRAN communicational system.

A Web Pages Automatic Filtering System

This article describes a Web pages automatic filtering system. It is an open and dynamic system based on multi agents architecture. This system is built up by a set of agents having each a quite precise filtering task of to carry out (filtering process broken up into several elementary treatments working each one a partial solution). New criteria can be added to the system without stopping its execution or modifying its environment. We want to show applicability and adaptability of the multi-agents approach to the networks information automatic filtering. In practice, most of existing filtering systems are based on modular conception approaches which are limited to centralized applications which role is to resolve static data flow problems. Web pages filtering systems are characterized by a data flow which varies dynamically.

New Technologies for Modeling of Gas Turbine Cooled Blades

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Using Quality Models to Evaluate National ID systems: the Case of the UAE

This paper presents findings from the evaluation study carried out to review the UAE national ID card software. The paper consults the relevant literature to explain many of the concepts and frameworks explained herein. The findings of the evaluation work that was primarily based on the ISO 9126 standard for system quality measurement highlighted many practical areas that if taken into account is argued to more likely increase the success chances of similar system implementation projects.

Identifications and Monitoring of Power System Dynamics Based on the PMUs and Wavelet Technique

Low frequency power oscillations may be triggered by many events in the system. Most oscillations are damped by the system, but undamped oscillations can lead to system collapse. Oscillations develop as a result of rotor acceleration/deceleration following a change in active power transfer from a generator. Like the operations limits, the monitoring of power system oscillating modes is a relevant aspect of power system operation and control. Unprevented low-frequency power swings can be cause of cascading outages that can rapidly extend effect on wide region. On this regard, a Wide Area Monitoring, Protection and Control Systems (WAMPCS) help in detecting such phenomena and assess power system dynamics security. The monitoring of power system electromechanical oscillations is very important in the frame of modern power system management and control. In first part, this paper compares the different technique for identification of power system oscillations. Second part analyzes possible identification some power system dynamics behaviors Using Wide Area Monitoring Systems (WAMS) based on Phasor Measurement Units (PMUs) and wavelet technique.

Thermal and Visual Performance of Solar Control Film

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Efficient Boosting-Based Active Learning for Specific Object Detection Problems

In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.

DTC-SVM Scheme for Induction Motors Fedwith a Three-level Inverter

Direct Torque Control is a control technique in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators. DTC drives utilizing hysteresis comparators suffer from high torque ripple and variable switching frequency. The most common solution to those problems is to use the space vector depends on the reference torque and flux. In this Paper The space vector modulation technique (SVPWM) is applied to 2 level inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the torque ripple. Then the controller based on space vector modulation is designed to be applied in the control of Induction Motor (IM) with a three-level Inverter. This type of Inverter has several advantages over the standard two-level VSI, such as a greater number of levels in the output voltage waveforms, Lower dV/dt, less harmonic distortion in voltage and current waveforms and lower switching frequencies. This paper proposes a general SVPWM algorithm for three-level based on standard two-level SVPWM. The proposed scheme is described clearly and simulation results are reported to demonstrate its effectiveness. The entire control scheme is implemented with Matlab/Simulink.

Modelling of Electron States in Quantum -Wire Systems - Influence of Stochastic Effects on the Confining Potential

In this work, we address theoretically the influence of red and white Gaussian noise for electronic energies and eigenstates of cylindrically shaped quantum dots. The stochastic effect can be imagined as resulting from crystal-growth statistical fluctuations in the quantum-dot material composition. In particular we obtain analytical expressions for the eigenvalue shifts and electronic envelope functions in the k . p formalism due to stochastic variations in the confining band-edge potential. It is shown that white noise in the band-edge potential leaves electronic properties almost unaffected while red noise may lead to changes in state energies and envelopefunction amplitudes of several percentages. In the latter case, the ensemble-averaged envelope function decays as a function of distance. It is also shown that, in a stochastic system, constant ensembleaveraged envelope functions are the only bounded solutions for the infinite quantum-wire problem and the energy spectrum is completely discrete. In other words, the infinite stochastic quantum wire behaves, ensemble-averaged, as an atom.

A Novel Security Framework for the Web System

In this paper, a framework is presented trying to make the most secure web system out of the available generic and web security technology which can be used as a guideline for organizations building their web sites. The framework is designed to provide necessary security services, to address the known security threats, and to provide some cover to other security problems especially unknown threats. The requirements for the design are discussed which guided us to the design of secure web system. The designed security framework is then simulated and various quality of service (QoS) metrics are calculated to measure the performance of this system.

CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher

Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.

A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems

In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.

Japan’s Policy towards the Countries of Central Asia

This article analyses the peculiarities of Japan’s policy toward the countries of Central Asia. The increasing role of Central Asia in the system of international relations engendered an objective need for understanding of the policy of leading states, including Japan, in the region in the twenty-first century. The purpose of the study is to investigate the peculiarities of the formation and development of Japan policy in Central Asia and to identify the problems and prospects of Japan’s policy toward the countries of the region on the basis of experts’ opinions. In this article, the method of analysis of the situation and a systematic method were used. Prognostic methods, the collective expert assessment and scenarios were used in the study to determine the prospects of Japan’s policy toward the countries of Central Asia.

Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor

In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.

Meta-requirements that Model Change

One of the common problems encountered in software engineering is addressing and responding to the changing nature of requirements. While several approaches have been devised to address this issue, ranging from instilling resistance to changing requirements in order to mitigate impact to project schedules, to developing an agile mindset towards requirements, the approach discussed in this paper is one of conceptualizing the delta in requirement and modeling it, in order to plan a response to it. To provide some context here, change is first formally identified and categorized as either formal change or informal change. While agile methodology facilitates informal change, the approach discussed in this paper seeks to develop the idea of facilitating formal change. To collect, document meta-requirements that represent the phenomena of change would be a pro-active measure towards building a realistic cognition of the requirements entity that can further be harnessed in the software engineering process.

An Ontology for Spatial Relevant Objects in a Location-aware System: Case Study: A Tourist Guide System

Location-aware computing is a type of pervasive computing that utilizes user-s location as a dominant factor for providing urban services and application-related usages. One of the important urban services is navigation instruction for wayfinders in a city especially when the user is a tourist. The services which are presented to the tourists should provide adapted location aware instructions. In order to achieve this goal, the main challenge is to find spatial relevant objects and location-dependent information. The aim of this paper is the development of a reusable location-aware model to handle spatial relevancy parameters in urban location-aware systems. In this way we utilized ontology as an approach which could manage spatial relevancy by defining a generic model. Our contribution is the introduction of an ontological model based on the directed interval algebra principles. Indeed, it is assumed that the basic elements of our ontology are the spatial intervals for the user and his/her related contexts. The relationships between them would model the spatial relevancy parameters. The implementation language for the model is OWLs, a web ontology language. The achieved results show that our proposed location-aware model and the application adaptation strategies provide appropriate services for the user.

Distance Transmission Line Protection Based on Radial Basis Function Neural Network

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Analysis of Codebook Based Channel Feedback Techniques for MIMO-OFDM Systems

This paper investigates the performance of Multiple- Input Multiple-Output (MIMO) feedback system combined with Orthogonal Frequency Division Multiplexing (OFDM). Two types of codebook based channel feedback techniques are used in this work. The first feedback technique uses a combination of both the long-term and short-term channel state information (CSI) at the transmitter, whereas the second technique uses only the short term CSI. The long-term and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The effectiveness of these techniques has been demonstrated through the simulation of a MIMO-OFDM feedback system. The results have been evaluated for 4x4 MIMO channels. Simulation results indicate the benefits of the MIMO-OFDM channel feedback system over the one without incorporating OFDM. Performance gain of about 3 dB is observed for MIMO-OFDM feedback system as compared to the one without employing OFDM. Hence MIMO-OFDM becomes an attractive approach for future high speed wireless communication systems.

Conceptual Design of an Airfoil with Temperature-Responsive Polymer

The accelerated growth in aircraft industries desire effectual schemes, programs, innovative designs of advanced systems and facilities to accomplish the augmenting need for home-free air transportation. In this paper, a contemporary conceptual design of a cambered airfoil has been proposed in order to providing augmented effective lift force relative to the airplane, and to eliminating drawbacks and limitations of an airfoil in a commercial airplane by using a kind of smart materials. This invention of an unsymmetrical airfoil structure utilizes the amplified air momentum around the airfoil and increased camber length to providing improved aircraft performance and assist to enhancing the reliability of the aircraft components. Moreover, this conjectured design helps to reducing airplane weight and total drag.