A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Evolutionary Algorithms (EAs) have been used widely through evolution theory to discover acceptable solutions that corresponds to challenges such as natural resources management. EAs are also used to solve varied problems in the real world. EAs have been rapidly identified for its ease in handling multiple objective problems. Reservoir operations is a vital and researchable area which has been studied in the last few decades due to the limited nature of water resources that is found mostly in the semi-arid regions of the world. The state of some developing economy that depends on electricity for overall development through hydropower production, a renewable form of energy, is appalling due to water scarcity. This paper presents a review of the applications of evolutionary algorithms to reservoir operation for hydropower production. This review includes the discussion on areas such as genetic algorithm, differential evolution, and reservoir operation. It also identified the research gaps discovered in these areas. The results of this study will be an eye opener for researchers and decision makers to think deeply of the adverse effect of water scarcity and drought towards economic development of a nation. Hence, it becomes imperative to identify evolutionary algorithms that can address this issue which can hamper effective hydropower generation.

An Institutional Analysis of IFRS Adoption in Poor Jurisdictions

The last two decades witnessed a movement towards harmonization of international financial reporting standards (IFRS) throughout the global economy. This investigation seeks to identify the factors that could explain the adoption of IFRS by poor jurisdictions. While there has been a considerable amount of literature published on the effects and key drivers of IFRS adoption in both developed and developing countries, little attention has been paid to jurisdictions with less developed capital markets and low income levels exclusively. Drawing upon the Institutional Isomorphism theory and analyzing a sample of 45 poor jurisdictions between 2008 and 2013, the study empirically shows that poor jurisdictions are driven by legitimacy concerns rather than by economic reasoning to adopt an international accounting perspective. This in turn has implications for the IASB, as it should seek to influence institutional pressures within a particular jurisdiction in order to promote IFRS adoption.

The "Project" Approach in Urban: A Response to Uncertainty

In this paper, we will try to demonstrate the importance of the project approach in the urban to deal with uncertainty, the importance of the involvement of all stakeholders in the urban project process and that the absence of an actor can lead to project failure but also the importance of the urban project management. These points are handled through the following questions: Does the urban adhere to the theory of complexity? Does the project approach bring hope and solution to make urban planning "sustainable"? How converging visions of actors for the same project? Is the management of urban project the solution to support the urban project approach?

An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program

The present study examined how translation teachers develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.

A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Application the Queuing Theory in the Warehouse Optimization

The aim of optimization of store management is not only designing the situation of store management itself including its equipment, technology and operation. In optimization of store management we need to consider also synchronizing of technological, transport, store and service operations throughout the whole process of logistic chain in such a way that a natural flow of material from provider to consumer will be achieved the shortest possible way, in the shortest possible time in requested quality and quantity and with minimum costs. The paper deals with the application of the queuing theory for optimization of warehouse processes. The first part refers to common information about the problematic of warehousing and using mathematical methods for logistics chains optimization. The second part refers to preparing a model of a warehouse within queuing theory. The conclusion of the paper includes two examples of using queuing theory in praxis.

Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects

In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.

Genetic Algorithm and Padé-Moment Matching for Model Order Reduction

A mixed method for model order reduction is presented in this paper. The denominator polynomial is derived by matching both Markov parameters and time moments, whereas numerator polynomial derivation and error minimization is done using Genetic Algorithm. The efficiency of the proposed method can be investigated in terms of closeness of the response of reduced order model with respect to that of higher order original model and a comparison of the integral square error as well.

Optimizing PID Parameters Using Harmony Search

Optimizing the parameters in the controller plays a vital role in the control theory and its applications. Optimizing the PID parameters is finding out the best value from the feasible solutions. Finding the optimal value is an optimization problem. Inverted Pendulum is a very good platform for control engineers to verify and apply different logics in the field of control theory. It is necessary to find an optimization technique for the controller to tune the values automatically in order to minimize the error within the given bounds. In this paper, the algorithmic concepts of Harmony search (HS) and Genetic Algorithm (GA) have been analyzed for the given range of values. The experimental results show that HS performs well than GA.

Ownership, Management Responsibility and Corporate Performance of the Listed Firms in Kazakhstan

The research explores the relationship between management responsibility and corporate governance of listed companies in Kazakhstan. This research employs firm level data of selected listed non-financial firms and firm level data “operational” financial sector, consisted from banking sector, insurance companies and accumulated pension funds using multivariate regression analysis under fixed effect model approach. Ownership structure includes institutional ownership, managerial ownership and private investor’s ownership. Management responsibility of the firm is expressed by the decision of the firm on amount of leverage. Results of the cross sectional panel study for non-financial firms showed that only institutional shareholding is significantly negatively correlated with debt to equity ratio. Findings from “operational” financial sector show that leverage is significantly affected only by the CEO/Chair duality and the size of financial institutions, and insignificantly affected by ownership structure. Also, the findings show, that there is a significant negative relationship between profitability and the debt to equity ratio for non-financial firms, which is consistent with pecking order theory. Generally, the found results suggest that corporate governance and a management responsibility play important role in corporate performance of listed firms in Kazakhstan.

Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams

In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.

Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation

This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.

Sliding Mode Control of Autonomous Underwater Vehicles

This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach.

Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model

This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the Quality of Service (QoS) of Primary Users (PU), a novel method is proposed for the resource allocation of Secondary Users (SU). In this paper, we propose the unique Utility Function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the Cognitive Radio Network (CRN) and to minimize the interference scenario. Utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. Existence of Nash Equilibrium for the postulated game is established.

The Impact of Online Advertising on Consumer Purchase Behavior Based on Malaysian Organizations

The paper aims to evaluate the effect of online advertising on consumer purchase behavior in Malaysian organizations. The paper has potential to extend and refine theory. A survey was distributed among Students of UTM university during the winter 2014 and 160 responses were collected. Regression analysis was used to test the hypothesized relationships of the model. Result shows that the predictors (cost saving factor, convenience factor and customized product or services) have positive impact on intention to continue seeking online advertising.

Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine

This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.

Effect of Unbound Granular Materials Nonlinear Resilient Behavior on Pavement Response and Performance of Low Volume Roads

Structural analysis of flexible pavements has been and still is currently performed using multi-layer elastic theory. However, for thinly surfaced pavements subjected to low to medium volumes of traffics, the importance of non-linear stress-strain behavior of unbound granular materials (UGM) requires the use of more sophisticated numerical models for structural design and performance of such pavements. In the present work, nonlinear unbound aggregates constitutive model is implemented within an axisymmetric finite element code developed to simulate the nonlinear behavior of pavement structures including two local aggregates of different mineralogical nature, typically used in Algerian pavements. The performance of the mechanical model is examined about its capability of representing adequately, under various conditions, the granular material non-linearity in pavement analysis. In addition, deflection data collected by Falling Weight Deflectometer (FWD) are incorporated into the analysis in order to assess the sensitivity of critical pavement design criteria and pavement design life to the constitutive model. Finally, conclusions of engineering significance are formulated. 

Knowledge Transfer and the Translation of Technical Texts

This paper contributes to the ongoing debate as to the relevance of translation studies to professional practitioners. It exposes the various misconceptions permeating the links between theory and practice in the translation landscape in the Arab World. It is a thesis of this paper that specialization in translation should be redefined; taking account of the fact, that specialized knowledge alone is neither crucial nor sufficient in technical translation. It should be tested against the readability of the translated text, the appropriateness of its style and the usability of its content by endusers to carry out their intended tasks. The paper also proposes a preliminary model to establish a working link between theory and practice from the perspective of professional trainers and practitioners, calling for the latter to participate in the production of knowledge in a systematic fashion. While this proposal is driven by a rather intuitive conviction, a research line is needed to specify the methodological moves to establish the mediation strategies that would relate the components in the model of knowledge transfer proposed in this paper. 

Analysis of the Learners’ Responses of the Adjusted Rorschach Comprehensive System: Critical Psychological Perspective

The study focused on the analysis of the Adjusted Rorschach Comprehensive System’s responses. The objective of this study is to analyse the participants’ response rate of the Adjusted Rorschach Comprehensive System with regards to critical psychology approach. The use of critical psychology theory in this study was crucial because it responds to the current inadequate western theory or practice in the field of psychology. The study adopted a qualitative approach and a case study design. The study was grounded on interpretivist paradigm. The sample size comprised six learners (three boys and three girls, aged of 14 years) from historically disadvantaged school in the Western Cape, South Africa. The Adjusted Rorschach Comprehensive System (ARCS) administration procedure, biographical information, semi-structured interviews, and observation were used to collect data. Data was analysed using thematic framework. The study found out that, factors that increased the response rates during the administration of ARCS were, language, seating arrangement, drawing, viewing, and describing. The study recommended that, psychological test designers take into consideration the philosophy or worldviews of the local people for whom the test is designed to minimize low response rates.

Synchronization of Semiconductor Laser Networks

In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interest case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulate by Matlab. These results are applicable to private communication.