Identifications and Monitoring of Power System Dynamics Based on the PMUs and Wavelet Technique

Low frequency power oscillations may be triggered by many events in the system. Most oscillations are damped by the system, but undamped oscillations can lead to system collapse. Oscillations develop as a result of rotor acceleration/deceleration following a change in active power transfer from a generator. Like the operations limits, the monitoring of power system oscillating modes is a relevant aspect of power system operation and control. Unprevented low-frequency power swings can be cause of cascading outages that can rapidly extend effect on wide region. On this regard, a Wide Area Monitoring, Protection and Control Systems (WAMPCS) help in detecting such phenomena and assess power system dynamics security. The monitoring of power system electromechanical oscillations is very important in the frame of modern power system management and control. In first part, this paper compares the different technique for identification of power system oscillations. Second part analyzes possible identification some power system dynamics behaviors Using Wide Area Monitoring Systems (WAMS) based on Phasor Measurement Units (PMUs) and wavelet technique.

Thermal and Visual Performance of Solar Control Film

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

UTHM Hand: Mechanics Behind The Dexterous Anthropomorphic Hand

A multi fingered dexterous anthropomorphic hand is being developed by the authors. The focus of the hand is the replacement of human operators in hazardous environments and also in environments where zero tolerance is observed for the human errors. The robotic hand will comprise of five fingers (four fingers and one thumb) each having four degrees of freedom (DOF) which can perform flexion, extension, abduction, adduction and also circumduction. For the actuation purpose pneumatic muscles and springs will be used. The paper exemplifies the mechanical design for the robotic hand. It also describes different mechanical designs that have been developed before date.

DTC-SVM Scheme for Induction Motors Fedwith a Three-level Inverter

Direct Torque Control is a control technique in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators. DTC drives utilizing hysteresis comparators suffer from high torque ripple and variable switching frequency. The most common solution to those problems is to use the space vector depends on the reference torque and flux. In this Paper The space vector modulation technique (SVPWM) is applied to 2 level inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the torque ripple. Then the controller based on space vector modulation is designed to be applied in the control of Induction Motor (IM) with a three-level Inverter. This type of Inverter has several advantages over the standard two-level VSI, such as a greater number of levels in the output voltage waveforms, Lower dV/dt, less harmonic distortion in voltage and current waveforms and lower switching frequencies. This paper proposes a general SVPWM algorithm for three-level based on standard two-level SVPWM. The proposed scheme is described clearly and simulation results are reported to demonstrate its effectiveness. The entire control scheme is implemented with Matlab/Simulink.

Modelling of Electron States in Quantum -Wire Systems - Influence of Stochastic Effects on the Confining Potential

In this work, we address theoretically the influence of red and white Gaussian noise for electronic energies and eigenstates of cylindrically shaped quantum dots. The stochastic effect can be imagined as resulting from crystal-growth statistical fluctuations in the quantum-dot material composition. In particular we obtain analytical expressions for the eigenvalue shifts and electronic envelope functions in the k . p formalism due to stochastic variations in the confining band-edge potential. It is shown that white noise in the band-edge potential leaves electronic properties almost unaffected while red noise may lead to changes in state energies and envelopefunction amplitudes of several percentages. In the latter case, the ensemble-averaged envelope function decays as a function of distance. It is also shown that, in a stochastic system, constant ensembleaveraged envelope functions are the only bounded solutions for the infinite quantum-wire problem and the energy spectrum is completely discrete. In other words, the infinite stochastic quantum wire behaves, ensemble-averaged, as an atom.

Preparation and Bioevaluation of DOTA-Cyclic RGD Peptide Dimer Labeled with 68Ga

Radiolabeled cyclic RGD peptides targeting integrin αvβ3 are reported as promising agents for the early diagnosis of metastatic tumors. With an aim to improve tumor uptake and retention of the peptide, cyclic RGD peptide dimer E[c (RGDfK)] 2 (E = Glutamic acid, f = phenyl alanine, K = lysine) coupled to the bifunctional chelator DOTA was custom synthesized and radiolabelled with 68Ga. Radiolabelling of cyclic RGD peptide dimer with 68Ga was carried out using HEPES buffer and biological evaluation of the complex was done in nude mice bearing HT29 tumors.

A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems

In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.

Performance Analysis of Expert Systems Incorporating Neural Network for Fault Detection of an Electric Motor

In this paper, an artificial neural network simulator is employed to carry out diagnosis and prognosis on electric motor as rotating machinery based on predictive maintenance. Vibration data of the primary failed motor including unbalance, misalignment and bearing fault were collected for training the neural network. Neural network training was performed for a variety of inputs and the motor condition was used as the expert training information. The main purpose of applying the neural network as an expert system was to detect the type of failure and applying preventive maintenance. The advantage of this study is for machinery Industries by providing appropriate maintenance that has an essential activity to keep the production process going at all processes in the machinery industry. Proper maintenance is pivotal in order to prevent the possible failures in operating system and increase the availability and effectiveness of a system by analyzing vibration monitoring and developing expert system.

A Study on the Removal of Trace Organic Matter in Water Treatment Procedures Using Powder-activated Carbon Biofilm

This study uses natural water and the surface properties of powdered activated carbon to acclimatize organics, forming biofilms on the surface of powdered activated carbon. To investigate the influence of different hydraulic retention times on the removal efficacy of trace organics in raw water, and to determine the optimal hydraulic retention time of a biological powdered activated carbon system, this study selects ozone-treated water processed by Feng-shan Advanced Water Purification Plant in southern Taiwan for the experiment. The evaluation indicators include assimilable organic carbon, dissolved organic carbon, and total organic carbon. The results of this study can improve the quality of drinking water treated using advanced water purification procedures.

Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Development of Storm Water Quality Improvement Strategy Plan for Local City Councils in Western Australia

The aim of this study was to develop a storm water quality improvement strategy plan (WQISP) which assists managers and decision makers of local city councils in enhancing their activities to improve regional water quality. City of Gosnells in Western Australia has been considered as a case study. The procedure on developing the WQISP consists of reviewing existing water quality data, identifying water quality issues in the study areas and developing a decision making tool for the officers, managers and decision makers. It was found that land use type is the main factor affecting the water quality. Therefore, activities, sources and pollutants related to different land use types including residential, industrial, agricultural and commercial are given high importance during the study. Semi-structured interviews were carried out with coordinators of different management sections of the regional councils in order to understand the associated management framework and issues. The issues identified from these interviews were used in preparing the decision making tool. Variables associated with the defined “value versus threat" decision making tool are obtained from the intensive literature review. The main recommendations provided for improvement of water quality in local city councils, include non-structural, structural and management controls and potential impacts of climate change.

Analytical Approach of the In-Pipe Robot on Branched Pipe Navigation and Its Solution

This paper determines most common model of in-pipe robots to derive its degree of freedom in order to compare with the necessary degree of freedom required for a system to move inside pipelines freely in order to derive analytical reason for losing control of in-pipe robots at branched pipe. DOF of most common mechanism in in-pipe robots can be calculated by considering the robot as a parallel manipulator. A new design based on previously researched in-pipe robot PAROYS has been suggested, and its possibility to overcome branched section has been simulated.

Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton

This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.

Fabric Printing Design, an Inspired from the Five-Color Porcelain (Benjarong)

The study is about the designed and decorative fabric printing that derived from the Five-color porcelain (Benjarong). The researcher examined the pattern and creativity of the decorative design of the Five-color porcelain (Benjarong) by the artists in order to apply for contemporary arts so that young generation will acknowledge the importance of the Five-color porcelain (Benjarong). The research methodology is both quantitative and qualitative. The researcher conducted an in-depth interview with the operator of five-color porcelain (Benjarong) at Ampawa, Samutsongkram. The information from the interview can be useful and implemented for designing the fabric patterns. The researcher found that there were many formats and designs of the Five-color porcelain (Benjarong) from the past to the present. Its unique design can be applied for the fabric patterns and ready-to-wear clothes properly. After advertising and showing the work of the Five-color porcelain (Benjarong) publicly, there were more young people interested in the Five-color porcelain (Benjarong) than expected which exceeded the objective with positive attitudes towards the Five-color porcelain (Benjarong).

Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

An Economic Evaluation of Subjective Well-Being Derived from Sport Participation

This study links up the theories of social psychology, economics and sport management to assess the impact of sport participation on subjective well-being (SWB) and use a simple statistic method to estimate the relative monetary value that sport participation derives SWB for Taiwan-s college students. By constructing proper measurements on sport participation and SWB respectively, a structural equation model (SEM) is developed to perform a confirmatory factory analysis, and the causal relationship between sport participation and SWB as well as the effect of the demographic variables on these two concepts are also discussed.

Protein Profiling in Alanine Aminotransferase Induced Patient cohort using Acetaminophen

Sensitive and predictive DILI (Drug Induced Liver Injury) biomarkers are needed in drug R&D to improve early detection of hepatotoxicity. The discovery of DILI biomarkers that demonstrate the predictive power to identify individuals at risk to DILI would represent a major advance in the development of personalized healthcare approaches. In this healthy volunteer acetaminophen study (4g/day for 7 days, with 3 monitored nontreatment days before and 4 after), 450 serum samples from 32 subjects were analyzed using protein profiling by antibody suspension bead arrays. Multiparallel protein profiles were generated using a DILI target protein array with 300 antibodies, where the antibodies were selected based on previous literature findings of putative DILI biomarkers and a screening process using pre dose samples from the same cohort. Of the 32 subjects, 16 were found to develop an elevated ALT value (2Xbaseline, responders). Using the plasma profiling approach together with multivariate statistical analysis some novel findings linked to lipid metabolism were found and more important, endogenous protein profiles in baseline samples (prior to treatment) with predictive power for ALT elevations were identified.

Airfoils Aerodynamic Efficiency Study in Heavy Rain via Two Phase Flow Approach

Heavy rainfall greatly affects the aerodynamic performance of the aircraft. There are many accidents of aircraft caused by aerodynamic efficiency degradation by heavy rain. In this Paper we have studied the heavy rain effects on the aerodynamic efficiency of NACA 64-210 & NACA 0012 airfoils. For our analysis, CFD method and preprocessing grid generator are used as our main analytical tools, and the simulation of rain is accomplished via two phase flow approach-s Discrete Phase Model (DPM). Raindrops are assumed to be non-interacting, non-deforming, non-evaporating and non-spinning spheres. Both airfoil sections exhibited significant reduction in lift and increase in drag for a given lift condition in simulated rain. The most significant difference between these two airfoils was the sensitivity of the NACA 64-210 to liquid water content (LWC), while NACA 0012 performance losses in the rain environment is not a function of LWC . It is expected that the quantitative information gained in this paper will be useful to the operational airline industry and greater effort such as small scale and full scale flight tests should put in this direction to further improve aviation safety.

Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences

Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.

3.5-bit Stage of the CMOS Pipeline ADC

A 3.5-bit stage of the CMOS pipelined ADC is proposed. In this report, the main part of 3.5-bit stage ADC is introduced. How the MDAC, comparator and encoder worked and designed are shown in details. Besides, an OTA which is used in fully differential pipelined ADC was described. Using gain-boost architecture with differential amplifier, this OTA achieve high-gain and high-speed. This design was using CMOS 0.18um process and simulation in Cadence. The result of the simulation shows that the OTA has a gain up to 80dB, the unity gain bandwidth of about 1.138GHz with 2pF load.