Pay Differentials and Employee Retention in the State Colleges of Education in the South-South Zone, Nigeria

The study examined the influence of pay differentials on employee retention in the State Colleges of Education in the South-South Region of Nigeria. 275 subjects drawn from members of the wage negotiating teams in the Colleges were administered questionnaires constructed for study. Analysis of Variance revealed that the observed pay differentials significantly influenced retainership, f(5,269 = 6.223, P< 0.05). However, the Multiple Classification Analysis and Post-Hoc test indicated that employees in two of the Colleges with slightly lower and higher pay levels may probably remain with their employers while employees in other Colleges with the least and highest pay levels suggested quitting. Based on these observations, the influence of pay on employee retention seems inconclusive. Generally, employees in the colleges studied are dissatisfied with current pay levels. Management should confront these challenges by improving pay packages to encourage employees to remain and be dedicated to duty.

User Satisfaction and Acceptability of Dialogue Systems for Detecting Counterfeit Drugs

The menace of counterfeiting pharmaceuticals/drugs has become a major threat to consumers, healthcare providers, drug manufacturers and governments. It is a source of public health concern both in the developed and developing nations. Several solutions for detecting and authenticating counterfeit drugs have been adopted by different nations of the world. In this article, a dialogue system-based drug counterfeiting detection system was developed and the results of the user satisfaction and acceptability of the system are presented. The results show that the users were satisfied with the system and the system was widely accepted as a means of fighting counterfeited drugs.

Measuring Cognitive Load - A Solution to Ease Learning of Programming

Learning programming is difficult for many learners. Some researches have found that the main difficulty relates to cognitive load. Cognitive overload happens in programming due to the nature of the subject which is intrinisicly over-bearing on the working memory. It happens due to the complexity of the subject itself. The problem is made worse by the poor instructional design methodology used in the teaching and learning process. Various efforts have been proposed to reduce the cognitive load, e.g. visualization softwares, part-program method etc. Use of many computer based systems have also been tried to tackle the problem. However, little success has been made to alleviate the problem. More has to be done to overcome this hurdle. This research attempts at understanding how cognitive load can be managed so as to reduce the problem of overloading. We propose a mechanism to measure the cognitive load during pre instruction, post instruction and in instructional stages of learning. This mechanism is used to help the instruction. As the load changes the instruction is made to adapt itself to ensure cognitive viability. This mechanism could be incorporated as a sub domain in the student model of various computer based instructional systems to facilitate the learning of programming.

The Splitting Upwind Schemes for Spectral Action Balance Equation

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.

Remarks on Energy Based Control of a Nonlinear, Underactuated, MIMO and Unstable Benchmark

In the last decade, energy based control theory has undergone a significant breakthrough in dealing with underactated mechanical systems with two successful and similar tools, controlled Lagrangians and controlled Hamiltanians (IDA-PBC). However, because of the complexity of these tools, successful case studies are lacking, in particular, MIMO cases. The seminal theoretical paper of controlled Lagrangians proposed by Bloch and his colleagues presented a benchmark example–a 4 d.o.f underactuated pendulum on a cart but a detailed and completed design is neglected. To compensate this ignorance, the note revisit their design idea by addressing explicit control functions for a similar device motivated by a vector thrust body hovering in the air. To the best of our knowledge, this system is the first MIMO, underactuated example that is stabilized by using energy based tools at the courtesy of the original design idea. Some observations are given based on computer simulation.

Evaluation of Clustering Based on Preprocessing in Gene Expression Data

Microarrays have become the effective, broadly used tools in biological and medical research to address a wide range of problems, including classification of disease subtypes and tumors. Many statistical methods are available for analyzing and systematizing these complex data into meaningful information, and one of the main goals in analyzing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we express and compare the performance of several clustering methods based on data preprocessing including strategies of normalization or noise clearness. We also evaluate each of these clustering methods with validation measures for both simulated data and real gene expression data. Consequently, clustering methods which are common used in microarray data analysis are affected by normalization and degree of noise and clearness for datasets.

Proposing an Efficient Method for Frequent Pattern Mining

Data mining, which is the exploration of knowledge from the large set of data, generated as a result of the various data processing activities. Frequent Pattern Mining is a very important task in data mining. The previous approaches applied to generate frequent set generally adopt candidate generation and pruning techniques for the satisfaction of the desired objective. This paper shows how the different approaches achieve the objective of frequent mining along with the complexities required to perform the job. This paper will also look for hardware approach of cache coherence to improve efficiency of the above process. The process of data mining is helpful in generation of support systems that can help in Management, Bioinformatics, Biotechnology, Medical Science, Statistics, Mathematics, Banking, Networking and other Computer related applications. This paper proposes the use of both upward and downward closure property for the extraction of frequent item sets which reduces the total number of scans required for the generation of Candidate Sets.

Existence of Multiple Positive Periodic Solutions to n Species Nonautonomous Lotka-Volterra Cooperative Systems with Harvesting Terms

In this paper, the existence of 2n positive periodic solutions for n species non-autonomous Lotka-Volterra cooperative systems with harvesting terms is established by using Mawhin-s continuation theorem of coincidence degree theory and matrix inequality. An example is given to illustrate the effectiveness of our results.

Algorithmic Method for Efficient Cruise Program

One of the mayor problems of programming a cruise circuit is to decide which destinations to include and which don-t. Thus a decision problem emerges, that might be solved using a linear and goal programming approach. The problem becomes more complex if several boats in the fleet must be programmed in a limited schedule, trying their capacity matches best a seasonal demand and also attempting to minimize the operation costs. Moreover, the programmer of the company should consider the time of the passenger as a limited asset, and would like to maximize its usage. The aim of this work is to design a method in which, using linear and goal programming techniques, a model to design circuits for the cruise company decision maker can achieve an optimal solution within the fleet schedule.

A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion

Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. A new type of propulsion developed recently, uses multi-flagella architecture inspired by the motility mechanism of prokaryotic microorganisms. There is a lack of efficient methods for designing this type of propulsion system. The goal of this paper is to overcome the lack and this way, a numerical strategy is proposed to design multi-flagella propulsion systems. The strategy is based on the implementation of the regularized stokeslet and rotlet theory, RFT theory and new approach of “local corrected velocity". The effects of shape parameters and angular velocities of each flagellum on overall flow field and on the robot net forces and moments are considered. Then a multi-layer perceptron artificial neural network is designed and employed to adjust the angular velocities of the motors for propulsion control. The proposed method applied successfully on a sample configuration and useful demonstrative results is obtained.

A Novel Methodology for Synthesis of Fault Trees from MATLAB-Simulink Model

Fault tree analysis is a well-known method for reliability and safety assessment of engineering systems. In the last 3 decades, a number of methods have been introduced, in the literature, for automatic construction of fault trees. The main difference between these methods is the starting model from which the tree is constructed. This paper presents a new methodology for the construction of static and dynamic fault trees from a system Simulink model. The method is introduced and explained in detail, and its correctness and completeness is experimentally validated by using an example, taken from literature. Advantages of the method are also mentioned.

The Experimental Study of the Effect of Flow Pattern Geometry on Performance of Micro Proton Exchange Membrane Fuel Cell

In this research, the flow pattern influence on performance of a micro PEMFC was investigated experimentally. The investigation focused on the impacts of bend angels and rib/channel dimensions of serpentine flow channel pattern on the performance and investigated how they improve the performance. The fuel cell employed for these experiments was a micro single PEMFC with a membrane of 1.44 cm2 Nafion NRE-212. The results show that 60° and 120° bend angles can provide the better performances at 20 and 40 sccm inlet flow rates comparing to that the conventional design. Additionally, wider channel with narrower rib spacing gives better performance. These results may be applied to develop universal heuristics for the design of flow pattern of micro PEMFC.

A new Heuristic Algorithm for the Dynamic Facility Layout Problem with Budget Constraint

In this research, we have developed a new efficient heuristic algorithm for the dynamic facility layout problem with budget constraint (DFLPB). This heuristic algorithm combines two mathematical programming methods such as discrete event simulation and linear integer programming (IP) to obtain a near optimum solution. In the proposed algorithm, the non-linear model of the DFLP has been changed to a pure integer programming (PIP) model. Then, the optimal solution of the PIP model has been used in a simulation model that has been designed in a similar manner as the DFLP for determining the probability of assigning a facility to a location. After a sufficient number of runs, the simulation model obtains near optimum solutions. Finally, to verify the performance of the algorithm, several test problems have been solved. The results show that the proposed algorithm is more efficient in terms of speed and accuracy than other heuristic algorithms presented in previous works found in the literature.

A Two-Channel Secure Communication Using Fractional Chaotic Systems

In this paper, a two-channel secure communication using fractional chaotic systems is presented. Conditions for chaos synchronization have been investigated theoretically by using Laplace transform. To illustrate the effectiveness of the proposed scheme, a numerical example is presented. The keys, key space, key selection rules and sensitivity to keys are discussed in detail. Results show that the original plaintexts have been well masked in the ciphertexts yet recovered faithfully and efficiently by the present schemes.

A Medical Images Based Retrieval System using Soft Computing Techniques

Content-Based Image Retrieval (CBIR) has been one on the most vivid research areas in the field of computer vision over the last 10 years. Many programs and tools have been developed to formulate and execute queries based on the visual or audio content and to help browsing large multimedia repositories. Still, no general breakthrough has been achieved with respect to large varied databases with documents of difering sorts and with varying characteristics. Answers to many questions with respect to speed, semantic descriptors or objective image interpretations are still unanswered. In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. In several articles, content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Systems (PACS) have been created. This paper gives an overview of soft computing techniques. New research directions are being defined that can prove to be useful. Still, there are very few systems that seem to be used in clinical practice. It needs to be stated as well that the goal is not, in general, to replace text based retrieval methods as they exist at the moment.

Investigation and Congestion Management to Solvethe Over-Load Problem of Shiraz Substation in FREC

In this paper, the transformers over-load problem of Shiraz substation in Fars Regional Electric Company (FREC) is investigated for a period of three years plan. So the suggestions for using phase shifting transformer (PST) and unified power flow controller (UPFC) in order to solve this problem are examined in details and finally, some economical and practical designs will be given in order to solve the related problems. Practical consideration and using the basic and fundamental concept of powers in transmission lines in order to find the economical design are the main advantages of this research. The simulation results of the integrated overall system with different designs compare them base on economical and practical aspects to solve the over-load and loss-reduction.

Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Deep Learning and Virtual Environment

While computers are known to facilitate lower levels of learning, such as rote memorization of facts, measurable through electronically administered and graded multiple-choice questions, yes/no, and true/false answers, the imparting and measurement of higher-level cognitive skills is more vexing. These require more open-ended delivery and answers, and may be more problematic in an entirely virtual environment, notwithstanding the advances in technologies such as wikis, blogs, discussion boards, etc. As with the integration of all technology, merit is based more on the instructional design of the course than on the technology employed in, and of, itself. With this in mind, this study examined the perceptions of online students in an introductory Computer Information Systems course regarding the fostering of various higher-order thinking and team-building skills as a result of the activities, resources and technologies (ART) used in the course.